Abstract:
Let A be an oval on a plane and P the uniform distribution over A with characteristic function f. In the first part of this note an inequality for |f| is given. In the second part some inequalities for joint characteristic function of ξ and some functions of ξ are established.
The main tool used is the so-called Van der Corput lemma.
Citation:
S. M. Sadikova, “Some inequalities for characteristic functions”, Teor. Veroyatnost. i Primenen., 11:3 (1966), 500–506; Theory Probab. Appl., 11:3 (1966), 441–447
\Bibitem{Sad66}
\by S.~M.~Sadikova
\paper Some inequalities for characteristic functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1966
\vol 11
\issue 3
\pages 500--506
\mathnet{http://mi.mathnet.ru/tvp646}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=207017}
\zmath{https://zbmath.org/?q=an:0202.48803}
\transl
\jour Theory Probab. Appl.
\yr 1966
\vol 11
\issue 3
\pages 441--447
\crossref{https://doi.org/10.1137/1111044}
Linking options:
https://www.mathnet.ru/eng/tvp646
https://www.mathnet.ru/eng/tvp/v11/i3/p500
Erratum
Letter to the Editor S. M. Sadikova Teor. Veroyatnost. i Primenen., 1967, 12:2, 396
This publication is cited in the following 11 articles:
Avram F. Leonenko N. Sakhno L., “Limit Theorems For Additive Functionals of Stationary Fields, Under Integrability Assumptions on the Higher Order Spectral Densities”, Stoch. Process. Their Appl., 125:4 (2015), 1629–1652
F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “On smooth behavior of probability distributions under polynomial mappings”, Theory Probab. Appl., 42:1 (1998), 28–38
F. Götze, Yu. V. Prokhorov, V. V. Ulyanov, “Bounds for characteristic functions of polynomials in asymptotically normal random variables”, Russian Math. Surveys, 51:2 (1996), 181–204
Vidmantas Bentkus, Friedrich G�tze, Ri?ardas Zitikis, “Asymptotic expansions in the integral and local limit theorems in banach spaces with applications to ?-statistics”, J Theor Probab, 6:4 (1993), 727
R.J.M.M. Does, R. Helmers, C.A.J. Klaassen, “On the edgeworth expansion for the sum of a function of uniform spacings”, Journal of Statistical Planning and Inference, 17 (1987), 149
Yu. V. Borovskih, “Estimates of the characteristic functions with applications to $\omega^2$-statistics. I”, Theory Probab. Appl., 29:3 (1985), 488–503
E. M. Kudlaev, “Limiting conditional distributions for sums of random variables”, Theory Probab. Appl., 29:4 (1985), 776–786
G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometric integrals”, Math. USSR-Izv., 15:2 (1980), 211–239
V. V. Jurinskii, “Bounds for Characteristic Functions of Certain Degenerate Multidimensional Distributions”, Theory Probab. Appl., 17:1 (1972), 101–113
V. V. Yurinskiǐ, “On application of the van der Corput lemma to estimation of the characteristic functions of certain singular distributions”, Theory Probab. Appl., 16:2 (1971), 387–388
A. Bikelis, “Asymptotic expansions of the distribution functions of the sums of independent equally distributed lattice random vectors”, Theory Probab. Appl., 14:3 (1969), 481–489