Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2024, Volume 69, Issue 4, Pages 668–694
DOI: https://doi.org/10.4213/tvp5734
(Mi tvp5734)
 

On parameter estimation of diffusion processes: sequential and fixed sample size estimation revisited

A. A. Novikovab, A. N. Shiryaevb, N. E. Kordzahiyac

a University of Technology Sydney, Sydney, Australia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Macquarie University, Australia
References:
Abstract: We derive new properties of the sequential parameter estimators for diffusion-type processes X={Xt,0tτ}, where τ is a stopping time (this includes the case of fixed sample size estimate). Some earlier theoretical results in this direction can be found in the book [R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, 2001]. Under an essentially less restrictive setting, we derive formulas for the moments of the maximum likelihood estimator (MLE) λ^τ for the parameter λ of the drift coefficient ft(λ)=atλbt and prove the exponential boundedness of λ^τ under a mild condition. In the provided examples we consider the mean-reverting ergodic diffusion process X, where bt=Xt, and the diffusion coefficient σt=σXtγ. In particular, we provide nonasymptotic analytical and numerical results for the bias and mean-square error of λ^τ for the Ornstein–Uhlenbeck (O–U) and Cox–Ingersoll–Ross (CIR) processes when τ=T is a fixed sample size, and τ=τH is a specially chosen stopping time that guarantees a prescribed magnitude of 1/H for the variance of λ^τH.
Keywords: sequential parameter estimators, processes of differential types, exact and asymptotic formulas for bias and mean-square error, exponential boundedness of distributions of estimators, the Ornstein–Uhlenbeck and Cox–Ingersoll–Ross processes, change of measure.
Received: 15.07.2024
English version:
Theory of Probability and its Applications, 2025, Volume 69, Issue 4, Pages 531–552
DOI: https://doi.org/10.1137/S0040585X97T992112
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Novikov, A. N. Shiryaev, N. E. Kordzahiya, “On parameter estimation of diffusion processes: sequential and fixed sample size estimation revisited”, Teor. Veroyatnost. i Primenen., 69:4 (2024), 668–694; Theory Probab. Appl., 69:4 (2025), 531–552
Citation in format AMSBIB
\Bibitem{NovShiKor24}
\by A.~A.~Novikov, A.~N.~Shiryaev, N.~E.~Kordzahiya
\paper On parameter estimation of diffusion processes: sequential and fixed sample size estimation revisited
\jour Teor. Veroyatnost. i Primenen.
\yr 2024
\vol 69
\issue 4
\pages 668--694
\mathnet{http://mi.mathnet.ru/tvp5734}
\crossref{https://doi.org/10.4213/tvp5734}
\transl
\jour Theory Probab. Appl.
\yr 2025
\vol 69
\issue 4
\pages 531--552
\crossref{https://doi.org/10.1137/S0040585X97T992112}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000039284}
Linking options:
  • https://www.mathnet.ru/eng/tvp5734
  • https://doi.org/10.4213/tvp5734
  • https://www.mathnet.ru/eng/tvp/v69/i4/p668
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :2
    Russian version HTML:5
    References:43
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025