Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2023, Volume 68, Issue 3, Pages 586–595
DOI: https://doi.org/10.4213/tvp5629
(Mi tvp5629)
 

This article is cited in 1 scientific paper (total in 1 paper)

On characterization of quantum Gaussian measurement channels

A. S. Holevo

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (480 kB) Citations (1)
References:
Abstract: We provide a characterization of measurement (quantum-classical) channels, which map Gaussian states to Gaussian probability distributions.
Keywords: quantum measurement channel, Gaussian distribution, operator characteristic function.
Received: 21.01.2023
English version:
Theory of Probability and its Applications, 2023, Volume 68, Issue 3, Pages 473–480
DOI: https://doi.org/10.1137/S0040585X97T99157X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Holevo, “On characterization of quantum Gaussian measurement channels”, Teor. Veroyatnost. i Primenen., 68:3 (2023), 586–595; Theory Probab. Appl., 68:3 (2023), 473–480
Citation in format AMSBIB
\Bibitem{Hol23}
\by A.~S.~Holevo
\paper On characterization of quantum Gaussian measurement channels
\jour Teor. Veroyatnost. i Primenen.
\yr 2023
\vol 68
\issue 3
\pages 586--595
\mathnet{http://mi.mathnet.ru/tvp5629}
\crossref{https://doi.org/10.4213/tvp5629}
\transl
\jour Theory Probab. Appl.
\yr 2023
\vol 68
\issue 3
\pages 473--480
\crossref{https://doi.org/10.1137/S0040585X97T99157X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85179362758}
Linking options:
  • https://www.mathnet.ru/eng/tvp5629
  • https://doi.org/10.4213/tvp5629
  • https://www.mathnet.ru/eng/tvp/v68/i3/p586
  • This publication is cited in the following 1 articles:
    1. A. S. Holevo, “Information Capacity of State Ensembles and Observables”, Lobachevskii J Math, 45:6 (2024), 2509  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :28
    References:55
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025