Abstract:
The aim of the present work is to show that our recent results
on the approximation of distributions of sums of independent summands by
the infinitely divisible laws on convex polyhedra can be obtained via an alternative class of approximating infinitely divisible distributions.
We will also generalize the results to the infinite-dimensional case.
Citation:
F. Götze, A. Yu. Zaitsev, “On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem”, Teor. Veroyatnost. i Primenen., 67:1 (2022), 3–22; Theory Probab. Appl., 67:1 (2022), 1–16
\Bibitem{GotZai22}
\by F.~G\"otze, A.~Yu.~Zaitsev
\paper On alternative approximating distributions in the multivariate version of Kolmogorov's second uniform limit theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2022
\vol 67
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/tvp5416}
\crossref{https://doi.org/10.4213/tvp5416}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4466409}
\zmath{https://zbmath.org/?q=an:7523555}
\transl
\jour Theory Probab. Appl.
\yr 2022
\vol 67
\issue 1
\pages 1--16
\crossref{https://doi.org/10.1137/S0040585X97T99071X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85131042694}
Linking options:
https://www.mathnet.ru/eng/tvp5416
https://doi.org/10.4213/tvp5416
https://www.mathnet.ru/eng/tvp/v67/i1/p3
This publication is cited in the following 2 articles:
F. Götze, A. Yu. Zaitsev, “Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra”, J. Math. Sci., 273:5 (2023), 732–737
V. {\v , Y. Novak, “Compound Poisson approximation”, Probab. Surveys, 19:none (2022)