Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2020, Volume 65, Issue 4, Pages 671–692
DOI: https://doi.org/10.4213/tvp5403
(Mi tvp5403)
 

This article is cited in 3 scientific papers (total in 3 papers)

Subcritical branching processes in random environment with immigration: Survival of a single family

V. A. Vatutin, E. E. D'yakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (459 kB) Citations (3)
References:
Abstract: We consider a subcritical branching process in an independent and identically distributed (i.i.d.) random environment, where one immigrant arrives at each generation. We consider the event $\mathcal{A}_{i}(n)$ in which all individuals alive at time $n$ are descendants of the immigrant, who joined the population at time $i$, and investigate the asymptotic probability of this extreme event for $n\to \infty$ when $i$ is fixed, the difference $n-i$ is fixed, or $\min (i,n-i)\to \infty$. To deduce the desired asymptotics we establish some limit theorems for random walks conditioned to be nonnegative or negative on $[0,n]$.
Keywords: branching process, random environment, immigration, conditioned random walk.
Funding agency Grant number
Russian Science Foundation 19-11-00111
Received: 10.03.2020
Accepted: 06.07.2020
English version:
Theory of Probability and its Applications, 2021, Volume 65, Issue 4, Pages 527–544
DOI: https://doi.org/10.1137/S0040585X97T990101
Bibliographic databases:
Document Type: Article
MSC: 60J80; 60G50
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Subcritical branching processes in random environment with immigration: Survival of a single family”, Teor. Veroyatnost. i Primenen., 65:4 (2020), 671–692; Theory Probab. Appl., 65:4 (2021), 527–544
Citation in format AMSBIB
\Bibitem{VatDya20}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Subcritical branching processes in random environment with
immigration: Survival of a single family
\jour Teor. Veroyatnost. i Primenen.
\yr 2020
\vol 65
\issue 4
\pages 671--692
\mathnet{http://mi.mathnet.ru/tvp5403}
\crossref{https://doi.org/10.4213/tvp5403}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4167879}
\transl
\jour Theory Probab. Appl.
\yr 2021
\vol 65
\issue 4
\pages 527--544
\crossref{https://doi.org/10.1137/S0040585X97T990101}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000616235300002}
Linking options:
  • https://www.mathnet.ru/eng/tvp5403
  • https://doi.org/10.4213/tvp5403
  • https://www.mathnet.ru/eng/tvp/v65/i4/p671
  • Related presentations:
    This publication is cited in the following 3 articles:
    1. V. A. Vatutin, C. Smadi, “Critical Branching Processes in a Random Environment with Immigration: The Size of the Only Surviving Family”, Proc. Steklov Inst. Math., 316 (2022), 336–355  mathnet  crossref  crossref
    2. A. A. Imomov, A. Kh. Meiliev, “Ob asimptoticheskoi strukture nekriticheskikh markovskikh vetvyaschikhsya sluchainykh protsessov s nepreryvnym vremenem”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 69, 22–36  mathnet  crossref  elib
    3. Charline Smadi, Vladimir Vatutin, “Critical branching processes in random environment with immigration: survival of a single family”, Extremes, 24 (2021), 433–460  mathnet  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:373
    Full-text PDF :72
    References:47
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025