Abstract:
In this paper, we study the exponential functionals of the processes X with independent increments, namely,
It=∫t0exp{−Xs}ds,t≥0,
and also
I∞=∫∞0exp{−Xs}ds.
When X is a semimartingale with absolutely continuous characteristics, we
derive necessary and sufficient conditions for the existence of the Laplace
exponent of It, and also the sufficient conditions of finiteness of the
Mellin transform E(Iαt) with α∈R. We give
recurrent integral equations for this Mellin transform. Then we apply these
recurrent formulas to calculate the moments.
We also present the corresponding results for the exponential functionals of
Lévy processes, which hold under less restrictive conditions than in
[J. Bertoin and M. Yor, Probab. Surv., 2 (2005), pp. 191–212]. In
particular, we obtain an explicit formula for the moments of It and
I∞, and we give the precise number of finite moments of I∞.
Keywords:
exponential functional, process with independent increments, Lévy process, Mellin transform, moments.
This work was supported in part by DEFIMATHS project of the Research Federation of “Mathématiques de Pays de la Loire” and PANORisk project of Pays de la Loire region, France, and also by the Magnus Ehrnrooth Foundation, Finland.
Citation:
P. Salminen, L. Vostrikova, “On exponential functionals of processes with independent increments”, Teor. Veroyatnost. i Primenen., 63:2 (2018), 330–357; Theory Probab. Appl., 63:2 (2018), 267–291
\Bibitem{SalVos18}
\by P.~Salminen, L.~Vostrikova
\paper On exponential functionals of processes with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 2
\pages 330--357
\mathnet{http://mi.mathnet.ru/tvp5180}
\crossref{https://doi.org/10.4213/tvp5180}
\elib{https://elibrary.ru/item.asp?id=32823084}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 2
\pages 267--291
\crossref{https://doi.org/10.1137/S0040585X97T989040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056919504}
Linking options:
https://www.mathnet.ru/eng/tvp5180
https://doi.org/10.4213/tvp5180
https://www.mathnet.ru/eng/tvp/v63/i2/p330
This publication is cited in the following 9 articles:
Anita Behme, Paolo Di Tella, Apostolos Sideris, “On moments of integrals with respect to Markov additive processes and of Markov modulated generalized Ornstein–Uhlenbeck processes”, Stochastic Processes and their Applications, 174 (2024), 104382
Zbigniew Palmowski, Hristo Sariev, Mladen Savov, “Moments of exponential functionals of Lévy processes on a deterministic horizon – identities and explicit expressions”, Bernoulli, 30:4 (2024)
A. Barker, M. Savov, “Bivariate Bernstein-gamma functions and moments of exponential functionals of subordinators”, Stoch. Process. Their Appl., 131 (2021), 454–497
J. Ivanovs, J. D. Thostesen, “Discretization of the Lamperti representation of a positive self-similar Markov process”, Stoch. Process. Their Appl., 137 (2021), 200–221
J. Spielmann, L. Vostrikova, “On the ruin problem with investment when the risky asset is a semimartingale”, Theory Probab. Appl., 65:2 (2020), 249–269
L. Vostrikova, “On distributions of exponential functionals of the processes with independent increments”, Mod. Stoch.-THeory Appl., 7:3 (2020), 291–313
A. Behme, A. Sideris, “Exponential functionals of Markov additive processes”, Electron. J. Probab., 25 (2020), 37
E. Boguslavskaya, L. Vostrikova, “Revisiting integral functionals of geometric brownian motion”, Stat. Probab. Lett., 165 (2020), 108834
P. Salminen, L. Vostrikova, “On moments of integral exponential functionals of additive processes”, Stat. Probab. Lett., 146 (2019), 139–146