Processing math: 100%
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2018, Volume 63, Issue 2, Pages 260–283
DOI: https://doi.org/10.4213/tvp5147
(Mi tvp5147)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the order of random permutation with cycle weights

A. L. Yakymiv

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (640 kB) Citations (6)
References:
Abstract: Let Ord(τ) be the order of an element τ in the group Sn of permutations of an n-element set X. The present paper is concerned with the so-called general parametric model of a random permutation; according to this model an arbitrary fixed permutation τ from Sn is observed with the probability θu11θunn/H(n), where ui is the number of cycles of length i of the permutation τ, {θi, iN} are some nonnegative parameters (the weights of cycles of length i of the permutation τ), and H(n) is the corresponding normalizing factor. We assume that an arbitrary permutation τn has such a distribution. The function p(n)=H(n)/n! is assumed to be RO-varying at infinity with the lower index exceeding 1 (in particular, it can vary regularly), and the sequence {θi, iN} is bounded. Under these assumptions it is shown that the random variable lnOrd(τn) is asymptotically normal with mean nk=1θkln(k)/k and variance nk=1θkln2(k)/k. In particular, this scheme subsumes the class of random A-permutations (i.e., when θi=χ{iA}), where A is an arbitrary fixed subset of the positive integers. This scheme also includes the Ewens model of random permutation, where θiθ>0 for any iN. The limit theorem we prove here extends some previous results for these schemes. In particular, with θi1 for any iN, the result just mentioned implies the well-known Erdős–Turán limit theorem.
Keywords: random permutation with cycle weights, random A-permutation, random permutation in the Ewens mode, order of random permutation, regularly varying function, RO-varying function.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations PRAS-18-01
This work was supported by Program of the Presidium of the Russian Academy of Sciences no. 01 “Fundamental Mathematics and Its Applications” under grant PRAS-18-0.
Received: 13.06.2017
Accepted: 22.11.2017
English version:
Theory of Probability and its Applications, 2018, Volume 63, Issue 2, Pages 209–226
DOI: https://doi.org/10.1137/S0040585X97T989015
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. L. Yakymiv, “On the order of random permutation with cycle weights”, Teor. Veroyatnost. i Primenen., 63:2 (2018), 260–283; Theory Probab. Appl., 63:2 (2018), 209–226
Citation in format AMSBIB
\Bibitem{Yak18}
\by A.~L.~Yakymiv
\paper On the order of random permutation with cycle weights
\jour Teor. Veroyatnost. i Primenen.
\yr 2018
\vol 63
\issue 2
\pages 260--283
\mathnet{http://mi.mathnet.ru/tvp5147}
\crossref{https://doi.org/10.4213/tvp5147}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3796489}
\elib{https://elibrary.ru/item.asp?id=32823081}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 63
\issue 2
\pages 209--226
\crossref{https://doi.org/10.1137/S0040585X97T989015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448195800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056911984}
Linking options:
  • https://www.mathnet.ru/eng/tvp5147
  • https://doi.org/10.4213/tvp5147
  • https://www.mathnet.ru/eng/tvp/v63/i2/p260
  • This publication is cited in the following 6 articles:
    1. A. L. Yakymiv, “Limit behavior of the order statistics on the cycle lengths of random A-permutations”, Theory Probab. Appl., 69:1 (2024), 117–126  mathnet  crossref  crossref
    2. Yu. V. Yakubovich, “Rost sluchainykh razbienii putem dobavleniya chastei: sluchai stepennykh vesov”, Veroyatnost i statistika. 36, Zap. nauchn. sem. POMI, 535, POMI, SPb., 2024, 277–306  mathnet
    3. A. L. Yakymiv, “O sluchainykh otobrazheniyakh s ogranicheniyami na razmery komponent”, Diskret. matem., 35:3 (2023), 143–163  mathnet  crossref
    4. A. L. Yakymiv, “Asymptotics with remainder term for moments of the total cycle number of random A-permutation”, Discrete Math. Appl., 31:1 (2021), 51–60  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. L. Yakymiv, “Size distribution of the largest component of a random A-mapping”, Discrete Math. Appl., 31:2 (2021), 145–153  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. L. Yakymiv, “Abelian theorem for the regularly varying measure and its density in orthant”, Theory Probab. Appl., 64:3 (2019), 385–400  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :142
    References:67
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025