Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 4, Pages 634–653
DOI: https://doi.org/10.4213/tvp5146
(Mi tvp5146)
 

This article is cited in 13 scientific papers (total in 13 papers)

Multitype branching processes in random environment: survival probability for the critical case

V. A. Vatutin, E. E. D'yakonova

Novosibirsk State University
References:
Abstract: We investigate the asymptotic behavior of the survival probability of a critical multitype branching process evolving in an environment generated by a sequence of independent identically distributed random variables. Under fairly general assumptions on the form of the offspring generating functions of particles, we show that the probability of survival up to generation n of the process initiated at moment zero by a single particle of type i is equivalent to βin1/2, where βi is a positive constant. This assertion essentially generalizes a number of previously known results.
Keywords: branching processes, random environment, survival probability, change of measure.
Funding agency Grant number
Russian Science Foundation 17-11-01173
This research was supported by the Russian Science Foundation (project no.~17-11-01173).
Received: 30.05.2017
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 4, Pages 506–521
DOI: https://doi.org/10.1137/S0040585X97T988782
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Multitype branching processes in random environment: survival probability for the critical case”, Teor. Veroyatnost. i Primenen., 62:4 (2017), 634–653; Theory Probab. Appl., 62:4 (2018), 506–521
Citation in format AMSBIB
\Bibitem{VatDya17}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Multitype branching processes in random environment: survival probability for the critical case
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 4
\pages 634--653
\mathnet{http://mi.mathnet.ru/tvp5146}
\crossref{https://doi.org/10.4213/tvp5146}
\zmath{https://zbmath.org/?q=an:06918581}
\elib{https://elibrary.ru/item.asp?id=30512376}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 4
\pages 506--521
\crossref{https://doi.org/10.1137/S0040585X97T988782}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441079600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055210992}
Linking options:
  • https://www.mathnet.ru/eng/tvp5146
  • https://doi.org/10.4213/tvp5146
  • https://www.mathnet.ru/eng/tvp/v62/i4/p634
  • This publication is cited in the following 13 articles:
    1. M. Peigné, C. Pham, “The survival probability of a weakly subcritical multitype branching process in iid random environment”, Electron. J. Probab., 29:none (2024)  crossref
    2. Ion Grama, Quansheng Liu, Erwan Pin, “A Kesten–Stigum type theorem for a supercritical multitype branching process in a random environment”, Ann. Appl. Probab., 33:2 (2023)  crossref
    3. Ion Grama, Quansheng Liu, Erwan Pin, “Convergence in Lp for a Supercritical Multi-type Branching Process in a Random Environment”, Proc. Steklov Inst. Math., 316 (2022), 160–183  mathnet  crossref  crossref
    4. V. A. Vatutin, E. E. Dyakonova, “Multitype branching processes in random environment”, Russian Math. Surveys, 76:6 (2021), 1019–1063  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. Sh. K. Formanov, Sh. Yu. Jurayev, “On transient phenomena in branching random processes with discrete time”, Lobachevskii J. Math., 42:12 (2021), 2777–2784  crossref  mathscinet  isi
    6. Emile Le Page, Marc Peigné, Da Cam Pham, “Central limit theorem for a critical multitype branching process in random environments”, Tunisian J. Math., 3:4 (2021), 801  crossref  mathscinet
    7. Yanqing Wang, Quansheng Liu, “Asymptotic Properties of a Supercritical Branching Process with Immigration in a Random Environment”, Stochastics and Quality Control, 36:2 (2021), 145  crossref  mathscinet
    8. V. A. Vatutin, E. E. D'yakonova, “The Survival Probability for a Class of Multitype Subcritical Branching Processes in Random Environment”, Math. Notes, 107:2 (2020), 189–200  mathnet  crossref  crossref  mathscinet  isi  elib
    9. V. A. Vatutin, E. E. D'yakonova, “Properties of multitype subcritical branching processes in random environment”, Discrete Math. Appl., 31:5 (2021), 367–382  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. A. Vatutin, E. E. Dyakonova, “Branching processes in random environment with sibling dependence”, J. Math. Sci. (N.Y.), 246:4 (2020), 569–579  mathnet  crossref  mathscinet  scopus
    11. W. Hong, M. Liu, V. Vatutin, “Limit theorems for supercritical mbpre with linear fractional offspring distributions”, Markov Process. Relat. Fields, 25:1 (2019), 1–31  mathscinet  zmath  isi
    12. E. Le Page, M. Peigné, C. Pham, “The survival probability of a critical multi-type branching process in i.i.d. random environment”, Ann. Probab., 46:5 (2018), 2946–2972  crossref  mathscinet  isi  scopus
    13. V. Vatutin, V. Wachtel, “Multi-type subcritical branching processes in a random environment”, Adv. Appl. Probab., 50:A (2018), 281–289  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:582
    Full-text PDF :79
    References:72
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025