Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2017, Volume 62, Issue 2, Pages 267–291
DOI: https://doi.org/10.4213/tvp5108
(Mi tvp5108)
 

This article is cited in 7 scientific papers (total in 7 papers)

The joint law of terminal values of a nonnegative submartingale and its compensator

A. A. Gushchin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (506 kB) Citations (7)
References:
Abstract: We characterize the set W of possible joint laws of terminal values of a nonnegative submartingale X of class (D), starting at 0, and the predictable increasing process (compensator) from its Doob–Meyer decomposition. The set of possible values remains the same under certain additional constraints on X, for example, under the condition that X is an increasing process or a squared martingale. Special attention is paid to extremal (in a certain sense) elements of the set W and to the corresponding processes. We relate also our results with Rogers's results on the characterization of possible joint values of a martingale and its maximum.
Keywords: increasing process, time-change, comonotonicity, compensator, nonnegative submartingale, Doob–Meyer decomposition.
Funding agency Grant number
Russian Science Foundation 14-21-00162
This work was supported by the Russian Science Foundation under grant 14-21-00162.
Received: 16.01.2017
Accepted: 16.02.2017
English version:
Theory of Probability and its Applications, 2018, Volume 62, Issue 2, Pages 216–235
DOI: https://doi.org/10.1137/S0040585X97T988575
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Gushchin, “The joint law of terminal values of a nonnegative submartingale and its compensator”, Teor. Veroyatnost. i Primenen., 62:2 (2017), 267–291; Theory Probab. Appl., 62:2 (2018), 216–235
Citation in format AMSBIB
\Bibitem{Gus17}
\by A.~A.~Gushchin
\paper The joint law of terminal values of a nonnegative submartingale and its compensator
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 2
\pages 267--291
\mathnet{http://mi.mathnet.ru/tvp5108}
\crossref{https://doi.org/10.4213/tvp5108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3649035}
\elib{https://elibrary.ru/item.asp?id=29106599}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 2
\pages 216--235
\crossref{https://doi.org/10.1137/S0040585X97T988575}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432324200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047161958}
Linking options:
  • https://www.mathnet.ru/eng/tvp5108
  • https://doi.org/10.4213/tvp5108
  • https://www.mathnet.ru/eng/tvp/v62/i2/p267
  • This publication is cited in the following 7 articles:
    1. D. A. Borzykh, “Joint distributions of generalized integrable increasing processes and their generalized compensators”, Theory Probab. Appl., 69:1 (2024), 1–24  mathnet  crossref  crossref
    2. A. A. Gushchin, D. A. Borzykh, “On the denseness of the subset of discrete distributions in a certain set of two-dimensional distributions”, Mod. Stoch., Theory Appl., 9:3 (2022), 265–277  mathnet  crossref  mathscinet
    3. A. A. Gushchin, “The joint law of a max-continuous local submartingale and its maximum”, Theory Probab. Appl., 65:4 (2021), 545–557  mathnet  crossref  crossref  mathscinet  isi
    4. A. A. Gushchin, “Single jump filtrations and local martingales”, Mod. Stoch.-THeory Appl., 7:2 (2020), 135–156  crossref  mathscinet  zmath  isi
    5. “Abstracts of talks given at the 3rd International Conference on Stochastic Methods”, Theory Probab. Appl., 64:1 (2019), 124–169  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. A. A. Gushchin, “On possible relations between an increasing process and its compensator in the non-integrable case”, Russian Math. Surveys, 73:5 (2018), 928–930  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. “International conference on stochastic methods (Abstracts)”, Theory Probab. Appl., 62:4 (2018), 640–674  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:686
    Full-text PDF :220
    References:75
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025