Abstract:
This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker–Planck–Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
Citation:
V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations”, Teor. Veroyatnost. i Primenen., 62:1 (2017), 16–43; Theory Probab. Appl., 62:1 (2018), 12–34
\Bibitem{BogKirSha17}
\by V.~I.~Bogachev, A.~I.~Kirillov, S.~V.~Shaposhnikov
\paper Distances between stationary distributions of diffusions and solvability of nonlinear Fokker--Planck--Kolmogorov equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2017
\vol 62
\issue 1
\pages 16--43
\mathnet{http://mi.mathnet.ru/tvp5094}
\crossref{https://doi.org/10.4213/tvp5094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3633463}
\zmath{https://zbmath.org/?q=an:1388.60139}
\elib{https://elibrary.ru/item.asp?id=28169189}
\transl
\jour Theory Probab. Appl.
\yr 2018
\vol 62
\issue 1
\pages 12--34
\crossref{https://doi.org/10.1137/S0040585X97T988460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000432323500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047156164}
Linking options:
https://www.mathnet.ru/eng/tvp5094
https://doi.org/10.4213/tvp5094
https://www.mathnet.ru/eng/tvp/v62/i1/p16
This publication is cited in the following 8 articles:
Alexander Y. Mitrophanov, “The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective”, Mathematics, 12:11 (2024), 1608
V. I. Bogachev, S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations”, Russian Math. Surveys, 79:5 (2024), 751–805
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes”, Theory Probab. Appl., 68:3 (2023), 342–369
W. Tang, Y. P. Zhang, X. Y. Zhou, “Exploratory HJB equations and their convergence”, SIAM J. Control Optim., 60:6 (2022), 3191
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713
V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations”, J Math Sci, 242:1 (2019), 69
V. I. Bogachev, A. F. Miftakhov, S. V. Shaposhnikov, “Differential properties of semigroups and estimates of distances between stationary distributions of diffusions”, Dokl. Math., 99:2 (2019), 175–180
V. I. Bogachev, M. Roeckner, S. V. Shaposhnikov, “Convergence to stationary measures in nonlinear Fokker–Planck–Kolmogorov equations”, Dokl. Math., 98:2 (2018), 452–457