Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 4, Pages 837–844
DOI: https://doi.org/10.4213/tvp5090
(Mi tvp5090)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion

A. N. Shiryaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (180 kB) Citations (2)
References:
Abstract: The CUSUM (CUmulative SUM) statistic is a natural generalization of the likelihood ratio. It was observed long ago that this statistic has many remarkable properties, which are useful in empirical analysis of statistical data. In this paper, we consider Lorden's minimax criterion in problems of the quickest detection of disorder, which represents the value of the drift of Brownian motion changes at an unknown and unobservable moment of time. We provide the proof of the optimality for this minimax criterion.
Keywords: disorder, minimax criterion, two-sided inequalities for minimax risk, probabilistic characteristics, Itô formula.
Funding agency Grant number
Russian Science Foundation 15-11-30042
Received: 01.09.2016
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 4, Pages 719–726
DOI: https://doi.org/10.1137/S0040585X97T988447
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Shiryaev, “On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion”, Teor. Veroyatnost. i Primenen., 61:4 (2016), 837–844; Theory Probab. Appl., 61:4 (2017), 719–726
Citation in format AMSBIB
\Bibitem{Shi16}
\by A.~N.~Shiryaev
\paper On mini-max optimality of CUSUM statistics in change point detection problem for Brownian motion
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 4
\pages 837--844
\mathnet{http://mi.mathnet.ru/tvp5090}
\crossref{https://doi.org/10.4213/tvp5090}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3632537}
\zmath{https://zbmath.org/?q=an:1380.62234}
\elib{https://elibrary.ru/item.asp?id=28119215}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 4
\pages 719--726
\crossref{https://doi.org/10.1137/S0040585X97T988447}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418655700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039146902}
Linking options:
  • https://www.mathnet.ru/eng/tvp5090
  • https://doi.org/10.4213/tvp5090
  • https://www.mathnet.ru/eng/tvp/v61/i4/p837
  • This publication is cited in the following 2 articles:
    1. Salim Bouzebda, Anouar Abdeldjaoued Ferfache, “Asymptotic properties of semiparametric M-estimators with multiple change points”, Physica A: Statistical Mechanics and its Applications, 609 (2023), 128363  crossref
    2. S. Bouzebda, A. A. Ferfache, “Asymptotic properties of m-estimators based on estimating equations and censored data in semi-parametric models with multiple change points”, J. Math. Anal. Appl., 497:2 (2021), 124883  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:570
    Full-text PDF :110
    References:74
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025