Abstract:
A limit theorem is proved for doubly stochastically rarefied renewal processes. It is shown that under rather general conditions, as limit laws in limit theorems for mixed geometric random sums, there appear mixed exponential and mixed Laplace distributions. Some known and new properties of these distributions are reviewed. Also, some nonobvious properties of special representatives of these classes (the Weibull, Mittag-Leffler, Linnik, and other distributions) are described.
Citation:
V. Yu. Korolev, “Limit distributions for doubly stochastically rarefied renewal processes and their properties”, Teor. Veroyatnost. i Primenen., 61:4 (2016), 753–773; Theory Probab. Appl., 61:4 (2017), 649–664
\Bibitem{Kor16}
\by V.~Yu.~Korolev
\paper Limit distributions for doubly stochastically rarefied renewal processes and their properties
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 4
\pages 753--773
\mathnet{http://mi.mathnet.ru/tvp5086}
\crossref{https://doi.org/10.4213/tvp5086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3632533}
\zmath{https://zbmath.org/?q=an:1377.60042}
\elib{https://elibrary.ru/item.asp?id=28119211}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 4
\pages 649--664
\crossref{https://doi.org/10.1137/S0040585X97T98840X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000418655700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85039157022}
Linking options:
https://www.mathnet.ru/eng/tvp5086
https://doi.org/10.4213/tvp5086
https://www.mathnet.ru/eng/tvp/v61/i4/p753
This publication is cited in the following 11 articles:
V. Yu. Korolev, I. G. Shevtsova, O. V. Shestakov, “Asymptotic and Analytic Properties of Mixture Probability Models and Their Application to the Analysis of Complex Systems”, MoscowUniv.Comput.Math.Cybern., 48:4 (2024), 317
Victor Korolev, “Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax Distributions”, Mathematics, 11:13 (2023), 2890
Victor Korolev, Alexander Zeifman, “Quasi-Exponentiated Normal Distributions: Mixture Representations and Asymmetrization”, Mathematics, 11:17 (2023), 3797
V. Korolev, A. Gorshenin, “Probability models and statistical tests for extreme precipitation based on generalized negative binomial distributions”, Mathematics, 8:4 (2020), 604
V. Yu. Korolev, A. I. Zeifman, “Generalized negative binomial distributions as mixed geometric laws and related limit theorems”, Lith. Math. J., 59:3 (2019), 366–388
K. Gorska, A. Horzela, A. Lattanzi, “Composition law for the cole-cole relaxation and ensuing evolution equations”, Phys. Lett. A, 383:15 (2019), 1716–1721
V. Yu. Korolev, “Analogi teoremy Glezera dlya otritsatelnykh binomialnykh i obobschennykh gamma-raspredelenii i nekotorye ikh prilozheniya”, Inform. i ee primen., 11:3 (2017), 2–17
V. Yu. Korolev, “Nekotorye svoistva raspredeleniya Mittag-Lefflera i svyazannykh s nim protsessov”, Inform. i ee primen., 11:4 (2017), 26–37
V. Yu. Korolev, A. K. Gorshenin, “The probability distribution of extreme precipitation”, Dokl. Earth Sci., 477:2 (2017), 1461–1466
V. Korolev, A. Gorshenin, A. Korchagin, A. Zeifman, “Generalized gamma distributions as mixed exponential laws and related limit theorems”, Proceedings of the 31st European Conference on Modelling and Simulation (ECMS 2017), eds. Z. Paprika, P. Horak, K. Varadi, P. Zwierczyk, A. Vidovics-Dancs, J. Radics, European Council Modelling & Simulation, 2017, 642+ pp.
V.Yu. Korolev, A. K. Gorshenin, “O RASPREDELENII VEROYaTNOSTEI EKSTREMALNYKh OSADKOV, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 5, 604