Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2016, Volume 61, Issue 2, Pages 384–394
DOI: https://doi.org/10.4213/tvp5062
(Mi tvp5062)
 

Short Communications

Estimation of availability function using Student distribution

H. Bevrania, V. Yu. Korolevb

a University of Tabriz
b Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
References:
Abstract: We consider the asymptotic behavior of the empirical availability function, which is an important reliability characteristic of technical, communication, information, or transport systems. Our main focus is the case of violation of the classical assumptions of homogeneity of failure flow or the existence of the expectation of failure-free performance or repair duration. Both the classical situation dealing with samples with nonrandom size and the situation where the number of available observations is unknown beforehand, that is, the sample size is random, are considered. In a special situation where the sample size has a negative binomial distribution, an analogue of the law of large numbers is proved for random sums of not necessarily identically distributed random variables describing conditions for the convergence of the distributions of negative binomial random sums to generalized gamma distributions. Thus, a simple limit scheme is proposed, within which generalized gamma distributions turn out to be limit laws. As a corollary, conditions are obtained for the convergence of the distributions of geometric random sums of independent nonidentically distributed random variables to the Weibull distribution.
Funding agency Grant number
Russian Foundation for Basic Research 15-07-04040_а
Received: 01.07.2014
Revised: 09.10.2015
English version:
Theory of Probability and its Applications, 2017, Volume 61, Issue 2, Pages 327–335
DOI: https://doi.org/10.1137/S0040585X97T988186
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: H. Bevrani, V. Yu. Korolev, “Estimation of availability function using Student distribution”, Teor. Veroyatnost. i Primenen., 61:2 (2016), 384–394; Theory Probab. Appl., 61:2 (2017), 327–335
Citation in format AMSBIB
\Bibitem{BevKor16}
\by H.~Bevrani, V.~Yu.~Korolev
\paper Estimation of availability function using Student distribution
\jour Teor. Veroyatnost. i Primenen.
\yr 2016
\vol 61
\issue 2
\pages 384--394
\mathnet{http://mi.mathnet.ru/tvp5062}
\crossref{https://doi.org/10.4213/tvp5062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3626789}
\elib{https://elibrary.ru/item.asp?id=26604216}
\transl
\jour Theory Probab. Appl.
\yr 2017
\vol 61
\issue 2
\pages 327--335
\crossref{https://doi.org/10.1137/S0040585X97T988186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404120400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021242375}
Linking options:
  • https://www.mathnet.ru/eng/tvp5062
  • https://doi.org/10.4213/tvp5062
  • https://www.mathnet.ru/eng/tvp/v61/i2/p384
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :72
    References:77
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025