Abstract:
This paper deals with limit distributions for sums $\eta_n$ which become independent when a certain path $x_n$,
$n=0,1,2,\dots$, of a Markov chain is defined. The dependence between $\{\eta_n\}$ and $\{X_n\}$ is expressed more exactly by (1).
Let $X_s$ be the path of a continuous Markov process. Furthermore, the study of the limit distributions of
$\zeta(t)=\int_0^t f(X_s)\,ds$ at $t\to\infty$ can be reduced to the study of limit distributions of sums $\eta _n$. This reduction is illustrated for the case where $X_s$ is a one-dimensional diffusion process. The limit distribution for
$\zeta(t)$ coincides with distributions obtained in [12]. The sufficient conditions for convergence to each distribution are also given (Theorems 2 and 3).
Citation:
R. Z. Khas'minskii, “On Limit Distributions of Sums of Conditionally Independent Random Variables”, Teor. Veroyatnost. i Primenen., 6:1 (1961), 119–125; Theory Probab. Appl., 6:1 (1961), 108–113
\Bibitem{Kha61}
\by R.~Z.~Khas'minskii
\paper On Limit Distributions of Sums of Conditionally Independent Random Variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1961
\vol 6
\issue 1
\pages 119--125
\mathnet{http://mi.mathnet.ru/tvp4758}
\transl
\jour Theory Probab. Appl.
\yr 1961
\vol 6
\issue 1
\pages 108--113
\crossref{https://doi.org/10.1137/1106014}
Linking options:
https://www.mathnet.ru/eng/tvp4758
https://www.mathnet.ru/eng/tvp/v6/i1/p119
This publication is cited in the following 3 articles:
Beqnu Parjiani, Levan Labadze, Tsiala Kvatadze, “ON THE ACCURACY BE THE METRIC OF THE DENSITY ESTIMATION CONSTRUCTED BY DEPENDENT OBSERVATIONS”, gs, 2023
R. Z. Khas'minskii, “Necessary and Sufficient Conditions for Asymptotic Stability of Linear Stochastic Systems”, Theory Probab. Appl., 12:1 (1967), 144–147
A. M. Il'in, R. Z. Has'minskiǐ, “On Brownian Motion Equations”, Theory Probab. Appl., 9:3 (1964), 421–444