Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2013, Volume 58, Issue 2, Pages 255–281
DOI: https://doi.org/10.4213/tvp4506
(Mi tvp4506)
 

This article is cited in 4 scientific papers (total in 4 papers)

On a probabilistic method of solving a one-dimensional initial-boundary value problem

I. A. Ibragimova, N. V. Smorodinab, M. M. Faddeevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences
b St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (272 kB) Citations (4)
References:
Abstract: We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation u/t+(σ2/2)2u/x2+f(x)u=0, where σ is a complex number.
Keywords: random processes; evolution equation; limit theorems; Feynman–Kac formula; Feynman integral; Feynman measure.
Received: 01.11.2012
English version:
Theory of Probability and its Applications, 2014, Volume 58, Issue 2, Pages 242–263
DOI: https://doi.org/10.1137/S0040585X97986503
Bibliographic databases:
Document Type: Article
MSC: 60
Language: Russian
Citation: I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a probabilistic method of solving a one-dimensional initial-boundary value problem”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 255–281; Theory Probab. Appl., 58:2 (2014), 242–263
Citation in format AMSBIB
\Bibitem{IbrSmoFad13}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper On a probabilistic method of solving a one-dimensional initial-boundary value problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 255--281
\mathnet{http://mi.mathnet.ru/tvp4506}
\crossref{https://doi.org/10.4213/tvp4506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3300556}
\zmath{https://zbmath.org/?q=an:06335003}
\elib{https://elibrary.ru/item.asp?id=20733009}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 242--263
\crossref{https://doi.org/10.1137/S0040585X97986503}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000004}
\elib{https://elibrary.ru/item.asp?id=24060532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902832394}
Linking options:
  • https://www.mathnet.ru/eng/tvp4506
  • https://doi.org/10.4213/tvp4506
  • https://www.mathnet.ru/eng/tvp/v58/i2/p255
  • This publication is cited in the following 4 articles:
    1. Faddeev M.M., Ibragimov I.A., Smorodina N.V., “A Stochastic Interpretation of the Cauchy Problem Solution For the Equation Partial Derivative tu=(σ2/2)Δu+V(x)u with complex σ”, Markov Process. Relat. Fields, 22:2 (2016), 203–226  mathscinet  zmath  isi
    2. I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Limit theorems for symmetric random walks and probabilistic approximation of the Cauchy problem solution for Schrödinger type evolution equations”, Stochastic Process. Appl., 125:12 (2015), 4455–4472  crossref  mathscinet  zmath  isi  elib
    3. A. Lachal, “First exit time from a bounded interval for pseudo-processes driven by the equation /t=(1)N12N/x2N”, Stochastic Process. Appl., 124:2 (2014), 1084–1111  crossref  mathscinet  zmath  isi
    4. I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Limit theorems on convergence of expectations of functionals of sums of independent random variables to solutions of initial boundary value problems”, Theory Probab. Appl., 59:2 (2015), 244–259  mathnet  crossref  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:740
    Full-text PDF :251
    References:101
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025