Abstract:
We obtain an analogue of probabilistic representation of a solution of an initial-boundary value problem for the equation ∂u/∂t+(σ2/2)∂2u/∂x2+f(x)u=0, where σ is a complex number.
Citation:
I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “On a probabilistic method of solving a one-dimensional initial-boundary value problem”, Teor. Veroyatnost. i Primenen., 58:2 (2013), 255–281; Theory Probab. Appl., 58:2 (2014), 242–263
\Bibitem{IbrSmoFad13}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper On a probabilistic method of solving a one-dimensional initial-boundary value problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 2
\pages 255--281
\mathnet{http://mi.mathnet.ru/tvp4506}
\crossref{https://doi.org/10.4213/tvp4506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3300556}
\zmath{https://zbmath.org/?q=an:06335003}
\elib{https://elibrary.ru/item.asp?id=20733009}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 2
\pages 242--263
\crossref{https://doi.org/10.1137/S0040585X97986503}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337502000004}
\elib{https://elibrary.ru/item.asp?id=24060532}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902832394}
Linking options:
https://www.mathnet.ru/eng/tvp4506
https://doi.org/10.4213/tvp4506
https://www.mathnet.ru/eng/tvp/v58/i2/p255
This publication is cited in the following 4 articles:
Faddeev M.M., Ibragimov I.A., Smorodina N.V., “A Stochastic Interpretation of the Cauchy Problem Solution For the Equation Partial Derivative ∂tu=(σ2/2)Δu+V(x)u with complex σ”, Markov Process. Relat. Fields, 22:2 (2016), 203–226
I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Limit theorems for symmetric random walks and probabilistic approximation of the Cauchy problem solution for Schrödinger type evolution equations”, Stochastic Process. Appl., 125:12 (2015), 4455–4472
A. Lachal, “First exit time from a bounded interval for pseudo-processes driven by the equation ∂/∂t=(−1)N−1∂2N/∂x2N”, Stochastic Process. Appl., 124:2 (2014), 1084–1111
I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Limit theorems on convergence of expectations of functionals of sums of independent random variables to solutions
of initial boundary value problems”, Theory Probab. Appl., 59:2 (2015), 244–259