Abstract:
We consider optimal stopping problems for a Brownian motion and a geometric Brownian motion with “disorder”, assuming that the moment of disorder is uniformly distributed on a finite segment. The optimal stopping rules are found as the times of first hitting of the time-dependent boundaries which are characterized by certain integral equations by some Markov process (the Shiryaev–Roberts statistic). The problems considered are related to mathematical finance and can be applied in questions of choosing the optimal time to sell an asset with the changing trend.
Citation:
M. V. Zhitlukhin, A. N. Shiryaev, “Optimal stopping problems for a Brownian motion with disorder on a segment”, Teor. Veroyatnost. i Primenen., 58:1 (2013), 193–200; Theory Probab. Appl., 58:1 (2014), 164–171
\Bibitem{ZhiShi13}
\by M.~V.~Zhitlukhin, A.~N.~Shiryaev
\paper Optimal stopping problems for a Brownian motion with disorder on~a~segment
\jour Teor. Veroyatnost. i Primenen.
\yr 2013
\vol 58
\issue 1
\pages 193--200
\mathnet{http://mi.mathnet.ru/tvp4500}
\crossref{https://doi.org/10.4213/tvp4500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267290}
\zmath{https://zbmath.org/?q=an:06308877}
\elib{https://elibrary.ru/item.asp?id=20733004}
\transl
\jour Theory Probab. Appl.
\yr 2014
\vol 58
\issue 1
\pages 164--171
\crossref{https://doi.org/10.1137/S0040585X97986448}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332790300012}
\elib{https://elibrary.ru/item.asp?id=21868042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896804163}
Linking options:
https://www.mathnet.ru/eng/tvp4500
https://doi.org/10.4213/tvp4500
https://www.mathnet.ru/eng/tvp/v58/i1/p193
This publication is cited in the following 4 articles:
Cagin Uru, Savas Dayanik, Semih O. Sezer, “Compound Poisson disorder problem with uniformly distributed disorder time”, Bernoulli, 29:3 (2023)
G. I. Belyavskii, N. V. Danilova, “Upravlenie v binarnykh modelyakh s razladkoi”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 15:3 (2022), 67–82
Xu Z.Q. Yi F., “Optimal Redeeming Strategy of Stock Loans Under Drift Uncertainty”, Math. Oper. Res., 45:1 (2020), 384–401
Albert N. Shiryaev, Probability Theory and Stochastic Modelling, 93, Stochastic Disorder Problems, 2019, 239