Citation:
V. I. Afanasyev, “Invariance principle for the critical Galton–Watson process attaining a high level”, Teor. Veroyatnost. i Primenen., 55:4 (2010), 625–643; Theory Probab. Appl., 55:4 (2011), 559–574
\Bibitem{Afa10}
\by V.~I.~Afanasyev
\paper Invariance principle for the critical Galton--Watson process attaining a high level
\jour Teor. Veroyatnost. i Primenen.
\yr 2010
\vol 55
\issue 4
\pages 625--643
\mathnet{http://mi.mathnet.ru/tvp4276}
\crossref{https://doi.org/10.4213/tvp4276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2859157}
\transl
\jour Theory Probab. Appl.
\yr 2011
\vol 55
\issue 4
\pages 559--574
\crossref{https://doi.org/10.1137/S0040585X97985066}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000296870800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-82355184056}
Linking options:
https://www.mathnet.ru/eng/tvp4276
https://doi.org/10.4213/tvp4276
https://www.mathnet.ru/eng/tvp/v55/i4/p625
This publication is cited in the following 3 articles:
V. A. Vatutin, C. Dong, E. E. Dyakonova, “Random walks conditioned to stay nonnegative and branching processes in an unfavourable environment”, Sb. Math., 214:11 (2023), 1501–1533
V. I. Afanasyev, “A conditional functional limit theorem for a decomposable branching process”, Springer Proc. Math. Statist., 358 (2021), 1–18
Florian Simatos, Wiley Encyclopedia of Operations Research and Management Science, 2011, 1