Citation:
I. S. Tyurin, “On the convergence rate in Lyapunov's theorem”, Teor. Veroyatnost. i Primenen., 55:2 (2010), 250–270; Theory Probab. Appl., 55:2 (2011), 253–270
\Bibitem{Tyu10}
\by I.~S.~Tyurin
\paper On the convergence rate in Lyapunov's theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2010
\vol 55
\issue 2
\pages 250--270
\mathnet{http://mi.mathnet.ru/tvp4200}
\crossref{https://doi.org/10.4213/tvp4200}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768904}
\transl
\jour Theory Probab. Appl.
\yr 2011
\vol 55
\issue 2
\pages 253--270
\crossref{https://doi.org/10.1137/S0040585X97984760}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000291205300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959294289}
Linking options:
https://www.mathnet.ru/eng/tvp4200
https://doi.org/10.4213/tvp4200
https://www.mathnet.ru/eng/tvp/v55/i2/p250
This publication is cited in the following 18 articles:
Qianqian Zhou, Alexander Sakhanenko, Junyi Guo, “Central limit theorem with rate of convergence under sublinear expectations”, Stochastic Processes and their Applications, 172 (2024), 104353
Nelson Vadori, Leo Ardon, Sumitra Ganesh, Thomas Spooner, Selim Amrouni, Jared Vann, Mengda Xu, Zeyu Zheng, Tucker Balch, Manuela Veloso, “Towards multi‐agent reinforcement learning‐driven over‐the‐counter market simulations”, Mathematical Finance, 34:2 (2024), 262
Lutz Mattner, “A convolution inequality, yielding a sharper Berry–Esseen theorem for summands Zolotarev-close to normal”, Theor. Probability and Math. Statist., 2024
Alexander Bulinski, Nikolay Slepov, “Sharp Estimates for Proximity of Geometric and Related Sums Distributions to Limit Laws”, Mathematics, 10:24 (2022), 4747
N. A. Slepov, “Convergence rate of random geometric sum distributions to the Laplace law”, Theory Probab. Appl., 66:1 (2021), 121–141
Pan X., Zhou W.-X., “Multiplier Bootstrap For Quantile Regression: Non-Asymptotic Theory Under Random Design”, Inf. Inference, 10:3 (2021), 813–861
Mattner L. Shevtsova I., “An Optimal Berry-Esseen Type Theorem For Integrals of Smooth Functions”, ALEA-Latin Am. J. Probab. Math. Stat., 16:1 (2019), 487–530
I. G. Shevtsova, “Convergence rate estimates in the global CLT for compound mixed Poisson distributions”, Theory Probab. Appl., 63:1 (2018), 72–93
Zolotukhin A. Nagaev S. Chebotarev V., “On a Bound of the Absolute Constant in the Berry-Esseen Inequality For i.i.D. Bernoulli Random Variables”, Mod. Stoch.-THeory Appl., 5:3 (2018), 385–410
I. G. Shevtsova, “A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums”, Theory Probab. Appl., 62:2 (2018), 278–294
Shevtsova I., “On the Absolute Constants in Nagaev-Bikelis-Type Inequalities”, Inequalities and Extremal Problems in Probability and Statistics: Selected Topics, ed. Pinelis I., Academic Press Ltd-Elsevier Science Ltd, 2017, 47–102
Mattner L. Shevtsova I.G., “An Optimal Berry-Esseen Type Inequality For Expectations of Smooth Functions”, Dokl. Math., 95:3 (2017), 250–253
L. Mattner, I.G. Shevtsova, “OPTIMALNOE NERAVENSTVO TIPA BERRI-ESSEENA DLYa INTEGRALOV OT GLADKIKh FUNKTsII, “Doklady Akademii nauk””, Doklady Akademii Nauk, 2017, no. 5, 535
I. Shevtsova, “On the accuracy of the approximation of the complex exponent by the first terms of its Taylor expansion with applications”, J. Math. Anal. Appl., 418:1 (2014), 185–210
Korolev V., Shevtsova I., “An improvement of the Berry–Esseen inequality with applications to Poisson and mixed Poisson random sums”, Scand. Actuar. J., 2012:2 (2012), 81–105
Sunklodas J.K., “Some estimates of normal approximation for the distribution of a sum of a random number of independent random variables”, Lith. Math. J., 52:3 (2012), 326–333
V. Yu. Korolev, I. G. Shevtsova, S. Ya. Shorgin, “O neravenstvakh tipa Berri–Esseena dlya puassonovskikh sluchainykh summ”, Inform. i ee primen., 5:3 (2011), 64–66
I. S. Tyurin, “An improvement of the residual in the Lyapunov theorem”, Theory Probab. Appl., 56:4 (2011), 693–696