Abstract:
Let $\xi(t)$ be a Wiener process in $E_n$, $\alpha_n$ a non-anticipative vector function, $\delta=\{\alpha_t\}$, $x_t^{\delta,x}$ a solution of
$$
x_t=x+\int_0^t\sigma(x_s,\alpha_s)d\xi_s+\int_0^t b(x_s,\alpha_s)\,ds,
$$ $\varphi=\varphi(x)$. In this paper, smouthness of functions
$$
v(x)=\sup_{\delta,\tau}\mathbf{M}\biggl[\int_0^\tau e^{-\lambda t}f(x_t^{\delta,x},\alpha_t)\,dt+e^{-\lambda\tau}\varphi(x_\tau^\delta,x)\biggr]
$$
is investigated.
Under conditions of smouthness type on $\sigma,b,f,\varphi$ it is proved that $v\in W_{p,\textrm{loc}}^2$ (Sobolev space). If, in addition, $\sigma\sigma^*$ is strictly positive-definite, then
$$
\sup_\alpha (L^\alpha v+f^\alpha)\leq 0\ (\textrm{a.e.}), \quad \sup_\alpha (L^\alpha v+f^\alpha)=0\ (\textrm{a.e.}\ \{x: v(x)>\varphi(x)\}).
$$
The structure of $\varepsilon$-optimal policies $\delta$ and $\varepsilon$-optimal stopping times $\tau$ is also studied.
Citation:
N. V. Krylov, “Control of a Solution of a Stochastic Integral Equation”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 111–128; Theory Probab. Appl., 17:1 (1972), 114–13
\Bibitem{Kry72}
\by N.~V.~Krylov
\paper Control of a Solution of a Stochastic Integral Equation
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 111--128
\mathnet{http://mi.mathnet.ru/tvp4193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299322}
\zmath{https://zbmath.org/?q=an:0265.60055}
\transl
\jour Theory Probab. Appl.
\yr 1972
\vol 17
\issue 1
\pages 114--13
\crossref{https://doi.org/10.1137/1117009}
Linking options:
https://www.mathnet.ru/eng/tvp4193
https://www.mathnet.ru/eng/tvp/v17/i1/p111
This publication is cited in the following 61 articles:
Carlo Bianca, Christian Dogbe, “Uniqueness Results of Semilinear Parabolic Equations in Infinite-Dimensional Hilbert Spaces”, Mathematics, 13:5 (2025), 703
Christelle Dleuna Nyoumbi, Antoine Tambue, “A Novel High Dimensional Fitted Scheme for Stochastic Optimal Control Problems”, Comput Econ, 61:1 (2023), 1
Ajay Jasra, Jeremy Heng, Yaxian Xu, Adrian N. Bishop, “A multilevel approach for stochastic nonlinear optimal control”, International Journal of Control, 95:5 (2022), 1290
Yangang Chen, Justin W. L. Wan, Springer Proceedings in Mathematics & Statistics, 360, Mathematical Methods in Image Processing and Inverse Problems, 2021, 197
Kristina Rognlien Dahl, “Forward-backward stochastic differential equation games with delay and noisy memory”, Stochastic Analysis and Applications, 38:4 (2020), 708
F. Bertoli, A. N. Bishop, “Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation”, International Journal of Control, 91:10 (2018), 2387
Shanjian Tang, “Dynamic Programming for General Linear Quadratic Optimal Stochastic Control with Random Coefficients”, SIAM J. Control Optim., 53:2 (2015), 1082
Pawel Kröger, “Harmonic spaces associated with parabolic and elliptic differential operators”, Math. Ann., 285:3 (1989), 393
P. L. Lions, “Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions”, Acta Math., 161 (1988), 243
P.-L. Lions, P. E. Souganidis, The IMA Volumes in Mathematics and Its Applications, 10, Stochastic Differential Systems, Stochastic Control Theory and Applications, 1988, 293
Karoui Nicole el, Nguyen Du'hŪŪ, Jeanblanc-Picqué Monique, “Compactification methods in the control of degenerate diffusions: existence of an optimal control”, Stochastics, 20:3 (1987), 169
Hideo Nagai, Lecture Notes in Mathematics, 1158, Stochastic Processes — Mathematics and Physics, 1986, 208
H. Nagai, “Stochastic control of symmetric markov processes and nonlinear variational inequalities”, Stochastics, 19:1-2 (1986), 83