Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 111–128 (Mi tvp4193)  

This article is cited in 61 scientific papers (total in 61 papers)

Control of a Solution of a Stochastic Integral Equation

N. V. Krylov

Moscow
Abstract: Let $\xi(t)$ be a Wiener process in $E_n$, $\alpha_n$ a non-anticipative vector function, $\delta=\{\alpha_t\}$, $x_t^{\delta,x}$ a solution of
$$ x_t=x+\int_0^t\sigma(x_s,\alpha_s)d\xi_s+\int_0^t b(x_s,\alpha_s)\,ds, $$
$\varphi=\varphi(x)$. In this paper, smouthness of functions
$$ v(x)=\sup_{\delta,\tau}\mathbf{M}\biggl[\int_0^\tau e^{-\lambda t}f(x_t^{\delta,x},\alpha_t)\,dt+e^{-\lambda\tau}\varphi(x_\tau^\delta,x)\biggr] $$
is investigated.
Under conditions of smouthness type on $\sigma,b,f,\varphi$ it is proved that $v\in W_{p,\textrm{loc}}^2$ (Sobolev space). If, in addition, $\sigma\sigma^*$ is strictly positive-definite, then
$$ \sup_\alpha (L^\alpha v+f^\alpha)\leq 0\ (\textrm{a.e.}), \quad \sup_\alpha (L^\alpha v+f^\alpha)=0\ (\textrm{a.e.}\ \{x: v(x)>\varphi(x)\}). $$

The structure of $\varepsilon$-optimal policies $\delta$ and $\varepsilon$-optimal stopping times $\tau$ is also studied.
Received: 28.04.1970
English version:
Theory of Probability and its Applications, 1972, Volume 17, Issue 1, Pages 114–13
DOI: https://doi.org/10.1137/1117009
Bibliographic databases:
Language: Russian
Citation: N. V. Krylov, “Control of a Solution of a Stochastic Integral Equation”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 111–128; Theory Probab. Appl., 17:1 (1972), 114–13
Citation in format AMSBIB
\Bibitem{Kry72}
\by N.~V.~Krylov
\paper Control of a Solution of a Stochastic Integral Equation
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 111--128
\mathnet{http://mi.mathnet.ru/tvp4193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299322}
\zmath{https://zbmath.org/?q=an:0265.60055}
\transl
\jour Theory Probab. Appl.
\yr 1972
\vol 17
\issue 1
\pages 114--13
\crossref{https://doi.org/10.1137/1117009}
Linking options:
  • https://www.mathnet.ru/eng/tvp4193
  • https://www.mathnet.ru/eng/tvp/v17/i1/p111
  • This publication is cited in the following 61 articles:
    1. Carlo Bianca, Christian Dogbe, “Uniqueness Results of Semilinear Parabolic Equations in Infinite-Dimensional Hilbert Spaces”, Mathematics, 13:5 (2025), 703  crossref
    2. Christelle Dleuna Nyoumbi, Antoine Tambue, “A Novel High Dimensional Fitted Scheme for Stochastic Optimal Control Problems”, Comput Econ, 61:1 (2023), 1  crossref
    3. Ajay Jasra, Jeremy Heng, Yaxian Xu, Adrian N. Bishop, “A multilevel approach for stochastic nonlinear optimal control”, International Journal of Control, 95:5 (2022), 1290  crossref
    4. Yangang Chen, Justin W. L. Wan, Springer Proceedings in Mathematics & Statistics, 360, Mathematical Methods in Image Processing and Inverse Problems, 2021, 197  crossref
    5. Kristina Rognlien Dahl, “Forward-backward stochastic differential equation games with delay and noisy memory”, Stochastic Analysis and Applications, 38:4 (2020), 708  crossref
    6. F. Bertoli, A. N. Bishop, “Nonlinear stochastic receding horizon control: stability, robustness and Monte Carlo methods for control approximation”, International Journal of Control, 91:10 (2018), 2387  crossref
    7. Shanjian Tang, “Dynamic Programming for General Linear Quadratic Optimal Stochastic Control with Random Coefficients”, SIAM J. Control Optim., 53:2 (2015), 1082  crossref
    8. Avner Friedman, Stochastic Differential Equations, 2010, 75  crossref
    9. Daniel Ocone, Ananda Weerasinghe, “Degenerate Variance Control in the One-dimensional Stationary Case”, Electron. J. Probab., 8:none (2003)  crossref
    10. Daniel Ocone, Ananda Weerasinghe, “Degenerate Variance Control of a One-Dimensional Diffusion”, SIAM J. Control Optim., 39:1 (2000), 1  crossref
    11. Wiley Series in Probability and Statistics, Sequential Stochastic Optimization, 1996, 314  crossref
    12. J. Spiliotis, “Certain results on a parabolic type Monge-Ampere equation”, Journal of Mathematical Analysis and Applications, 163:2 (1992), 484  crossref
    13. Alain Nairay, “Dynamic portfolio choice under asset price lognormality”, Computers & Mathematics with Applications, 24:8-9 (1992), 157  crossref
    14. Pawel Kr�ger, “Comparison theorems for diffusion processes”, J Theor Probab, 3:4 (1990), 515  crossref
    15. Pawel Kröger, “Harmonic spaces associated with parabolic and elliptic differential operators”, Math. Ann., 285:3 (1989), 393  crossref
    16. P. L. Lions, “Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions”, Acta Math., 161 (1988), 243  crossref
    17. P.-L. Lions, P. E. Souganidis, The IMA Volumes in Mathematics and Its Applications, 10, Stochastic Differential Systems, Stochastic Control Theory and Applications, 1988, 293  crossref
    18. Karoui Nicole el, Nguyen Du'hŪŪ, Jeanblanc-Picqué Monique, “Compactification methods in the control of degenerate diffusions: existence of an optimal control”, Stochastics, 20:3 (1987), 169  crossref
    19. Hideo Nagai, Lecture Notes in Mathematics, 1158, Stochastic Processes — Mathematics and Physics, 1986, 208  crossref
    20. H. Nagai, “Stochastic control of symmetric markov processes and nonlinear variational inequalities”, Stochastics, 19:1-2 (1986), 83  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :159
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025