Processing math: 100%
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 4, Pages 740–754 (Mi tvp3977)  

This article is cited in 8 scientific papers (total in 8 papers)

On extreme metric parameters of a random graph, I

Yu. D. Burtin

Leningrad
Abstract: A random graph Gn(t) is considered such that the edge between every pair of its vertices exists with the probability p=1et, 0<t<, independently from the other edges.
Let L=[logntn] be the integer part of logntn. Then, uniformly in t(cnlogn)/n (limncn=),
limnP(L+ld(Gn(t))L+2)=1,
where d(Gn(t)) denotes the diameter of the random graph. Thus the limit distribution of the diameter may be concentrated at at most two points.
Analogous propositions hold true for the radius and the cycle index of the random graph Gn(t).
Received: 01.03.1973
English version:
Theory of Probability and its Applications, 1975, Volume 19, Issue 4, Pages 710–725
DOI: https://doi.org/10.1137/1119080
Bibliographic databases:
Language: Russian
Citation: Yu. D. Burtin, “On extreme metric parameters of a random graph, I”, Teor. Veroyatnost. i Primenen., 19:4 (1974), 740–754; Theory Probab. Appl., 19:4 (1975), 710–725
Citation in format AMSBIB
\Bibitem{Bur74}
\by Yu.~D.~Burtin
\paper On extreme metric parameters of a~random graph,~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1974
\vol 19
\issue 4
\pages 740--754
\mathnet{http://mi.mathnet.ru/tvp3977}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=369168}
\zmath{https://zbmath.org/?q=an:0351.60012}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 19
\issue 4
\pages 710--725
\crossref{https://doi.org/10.1137/1119080}
Linking options:
  • https://www.mathnet.ru/eng/tvp3977
  • https://www.mathnet.ru/eng/tvp/v19/i4/p740
  • This publication is cited in the following 8 articles:
    1. Tatyana Ivanovna Fedoryaeva, Proceedings of Academician O.B. Lupanov 14th International Scientific Seminar “Discrete Mathematics and Its Applications”, 2022, 21  crossref
    2. T. I. Fedoryaeva, “On radius and typical properties of $n$-vertex graphs of given diameter”, Sib. elektron. matem. izv., 18:1 (2021), 345–357  mathnet  crossref
    3. Bernd Kreuter, Till Nierhoff, Lecture Notes in Computer Science, 1269, Randomization and Approximation Techniques in Computer Science, 1997, 43  crossref
    4. E Bienenstock, “On the dimensionality of cortical graphs”, Journal of Physiology-Paris, 90:3-4 (1996), 251  crossref
    5. M. B. Dale, Computer assisted vegetation analysis, 1991, 149  crossref
    6. A. D. Korshunov, “The main properties of random graphs with a large number of vertices and edges”, Russian Math. Surveys, 40:1 (1985), 121–198  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. Y. D. Burtin, “On a simple formula for random mappings and its applications”, Journal of Applied Probability, 17:2 (1980), 403  crossref
    8. Yu. D. Burtin, “On extreme metric characteristics of a random graph. II. Limit distributions”, Theory Probab. Appl., 20:1 (1975), 83–101  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025