Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 2, Pages 311–325
DOI: https://doi.org/10.4213/tvp3920
(Mi tvp3920)
 

This article is cited in 14 scientific papers (total in 14 papers)

Interpretations of Probability and Their p-Adic Extensions

A. Yu. Khrennikov

Växjö University
Abstract: This paper is devoted to foundations of probability theory. We discuss interpretations of probability, corresponding mathematical formalisms, and applications to quantum physics. One of the aims of this paper is to show that the probability model based on Kolmogorov's axiomatics cannot describe all stochastic phenomena, i.e., that quantum physics induces natural restrictions of the use of Kolmogorov's theory and that we need to develop non-Kolmogorov models for describing some quantum phenomena. The physical motivations are presented in a clear and brief manner. Thus the reader does not need to have preliminary knowledgeof quantum physics. Our main idea is that we cannot develop non-Kolmogorov models by the formal change of Kolmogorov's axiomatics. We begin with interpretations (classical, frequency, and proportional). Then we present a class of non-Kolmogorov models described by so-called p-adic numbers. Here, in particular, we obtain a quite natural realization of negative probabilities. These negative probability distributions might provide a solution of some quantum paradoxes.
Keywords: p-adic, foundations of probability theory, probability model, Bell inequality.
Received: 26.02.1998
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 2, Pages 256–273
DOI: https://doi.org/10.1137/S0040585X97978920
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, “Interpretations of Probability and Their p-Adic Extensions”, Teor. Veroyatnost. i Primenen., 46:2 (2001), 311–325; Theory Probab. Appl., 46:2 (2002), 256–273
Citation in format AMSBIB
\Bibitem{Khr01}
\by A.~Yu.~Khrennikov
\paper Interpretations of Probability and Their $p$-Adic Extensions
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 2
\pages 311--325
\mathnet{http://mi.mathnet.ru/tvp3920}
\crossref{https://doi.org/10.4213/tvp3920}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1968688}
\zmath{https://zbmath.org/?q=an:1012.81005}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 2
\pages 256--273
\crossref{https://doi.org/10.1137/S0040585X97978920}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000176400600005}
Linking options:
  • https://www.mathnet.ru/eng/tvp3920
  • https://doi.org/10.4213/tvp3920
  • https://www.mathnet.ru/eng/tvp/v46/i2/p311
  • This publication is cited in the following 14 articles:
    1. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Quantum mechanics on a p-adic Hilbert space: Foundations and prospects”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)  crossref
    2. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “Trace class operators and states in p-adic quantum mechanics”, Journal of Mathematical Physics, 64:5 (2023)  crossref
    3. Paolo Aniello, “States, observables and symmetries in p-adic quantum mechanics”, J. Phys.: Conf. Ser., 2667:1 (2023), 012055  crossref
    4. Paolo Aniello, Stefano Mancini, Vincenzo Parisi, “A p-Adic Model of Quantum States and the p-Adic Qubit”, Entropy, 25:1 (2022), 86  crossref
    5. Sergey Yu. Melnikov, Konstantin E. Samouylov, Lecture Notes in Computer Science, 12526, Internet of Things, Smart Spaces, and Next Generation Networks and Systems, 2020, 259  crossref
    6. Andrew Schumann, Emergence, Complexity and Computation, 33, Behaviourism in Studying Swarms: Logical Models of Sensing and Motoring, 2019, 1  crossref
    7. Andrew Schumann, Emergence, Complexity and Computation, 33, Behaviourism in Studying Swarms: Logical Models of Sensing and Motoring, 2019, 165  crossref
    8. Andrew Schumann, “p-Adic valued logical calculi in simulations of the slime mould behaviour”, Journal of Applied Non-Classical Logics, 25:2 (2015), 125  crossref
    9. Milosevic M., “A Propositional P-Adic Probability Logic”, Publ. Inst. Math.-Beograd, 87:101 (2010), 75–83  crossref  mathscinet  zmath  isi  scopus
    10. A.N. Gorban, O. Radulescu, Advances in Chemical Engineering, 34, Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engineering, 2008, 103  crossref
    11. Khrennikov A.Yu., “Generalized probabilities taking values in non-Archimedean fields and in topological groups”, Russ. J. Math. Phys., 14:2 (2007), 142–159  crossref  mathscinet  zmath  adsnasa  isi  scopus
    12. Khrennikov A., “p-adic probability theory and its generalizations”, p-adic mathematical physics, AIP Conf. Proc., 826, Amer. Inst. Phys., Melville, NY, 2006, 105–120  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Schmitt B.M., “The quantitation of buffering action I. A formal & general approach”, Theoretical Biology and Medical Modelling, 2 (2005), 8  crossref  isi  scopus
    14. Kotovich N.V., Khrennikov A.Y., “Representation and compression of images with the aid of m-adic coordinate systems”, Dokl. Math., 66:3 (2002), 330–334  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:661
    Full-text PDF :255
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025