Abstract:
One-dimensional random walk processes in a random environment of a general functional type are considered. The study is carried out by the natural scale method. We obtain conditions of existence of the natural scale, conditions of existence of the processes and a theorem on the representation of the local time as the compensator of the modulus of the martingale which is the random walk in the natural scale. The work is performed in martingale terms and contains a number of examples.
Keywords:
random walk, random environment, natural scale, semimartingale, compensator.
Citation:
A. A. Butov, “Martingale methods for random walks in a one-dimensional random environment”, Teor. Veroyatnost. i Primenen., 39:4 (1994), 681–698; Theory Probab. Appl., 39:4 (1994), 558–572
\Bibitem{But94}
\by A.~A.~Butov
\paper Martingale methods for random walks in a one-dimensional random environment
\jour Teor. Veroyatnost. i Primenen.
\yr 1994
\vol 39
\issue 4
\pages 681--698
\mathnet{http://mi.mathnet.ru/tvp3847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1347646}
\zmath{https://zbmath.org/?q=an:0846.60069}
\transl
\jour Theory Probab. Appl.
\yr 1994
\vol 39
\issue 4
\pages 558--572
\crossref{https://doi.org/10.1137/1139043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TR71500003}
Linking options:
https://www.mathnet.ru/eng/tvp3847
https://www.mathnet.ru/eng/tvp/v39/i4/p681
This publication is cited in the following 4 articles:
A. A. Butov, “Estimating the parameters of distributed productive just-in-time systems”, Autom. Remote Control, 81:3 (2020), 387–397
A. A. Butov, A. A. Kovalenko, “Stochastic models of just-in-time systems and windows of vulnerability in terms of the processes of birth and death”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:3 (2019), 525–540
A. A. Butov, A. A. Kovalenko, “Stochastic models of simple controlled systems just-in-time”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:3 (2018), 518–531
Alexander A. Butov, “On the problem of optimal instant observations of the linear birth and death process”, Statistics & Probability Letters, 101 (2015), 49