Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 2, Pages 205–222 (Mi tvp369)  

This article is cited in 21 scientific papers (total in 21 papers)

Equicontinuous Markov Operators

M. Rosenblatt

Brown University
Abstract: In the paper we study limit properties of equicontinuous (nearly periodic) positive operators which transform continuous functions into continuous ones. The domain of definition of the functions is a compact Hausdorff space XX. Section 1 contains some preliminary information. In Section 2, positive Markov operators are considered. A decomposition of part of the space XX into ergodic sub-parts is obtained, which is analogous to the decomposition of Krylov and Bogolyubov. In the next section eigenfunctions of positive operators are studied which correspond to eigenvalues with maximal absolute values. The theory of Perron-Frobenius is generalized to the situation considered. Section 4 is devoted to the investigation of the asymptotic behavior of the powers TnTn of Markov transition operators. Finally, in Section 5, we consider the asymptotic behavior of the convolutions νnνn, n=1,2,n=1,2,, of a regular measure on a compact topological subgroup. Some results obtained in the previous sections are used for the study of this question.
Received: 20.11.1963
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 2, Pages 180–197
DOI: https://doi.org/10.1137/1109033
Bibliographic databases:
Language: English
Citation: M. Rosenblatt, “Equicontinuous Markov Operators”, Teor. Veroyatnost. i Primenen., 9:2 (1964), 205–222; Theory Probab. Appl., 9:2 (1964), 180–197
Citation in format AMSBIB
\Bibitem{Ros64}
\by M.~Rosenblatt
\paper Equicontinuous Markov Operators
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 2
\pages 205--222
\mathnet{http://mi.mathnet.ru/tvp369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=171318}
\zmath{https://zbmath.org/?q=an:0133.40101}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 2
\pages 180--197
\crossref{https://doi.org/10.1137/1109033}
Linking options:
  • https://www.mathnet.ru/eng/tvp369
  • https://www.mathnet.ru/eng/tvp/v9/i2/p205
  • This publication is cited in the following 21 articles:
    1. Hui Xiao, Ion Grama, Quansheng Liu, “Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices”, J Theor Probab, 38:2 (2025)  crossref
    2. Y. Guivarc'h, É. Le Page, “Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)  crossref
    3. Richard A. Davis, Keh-Shin Lii, Dimitris N. Politis, Selected Works of Murray Rosenblatt, 2011, 23  crossref
    4. David R. Brillinger, Richard A. Davis, “A Conversation with Murray Rosenblatt”, Statist. Sci., 24:1 (2009)  crossref
    5. M. Rosenblatt, “An example and transition function equicontinuity”, Statistics & Probability Letters, 76:18 (2006), 1961  crossref
    6. W.J. Anderson, N. Ward-Anderson, “A Further Application of the deLeeuw-Glickstein Theorem”, Rocky Mountain J. Math., 29:1 (1999)  crossref
    7. Andr�s Zempl�ni, “On the heredity of Hun and Hungarian property”, J Theor Probab, 3:4 (1990), 599  crossref
    8. Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, J. Appl. Probab., 23:04 (1986), 1019  crossref
    9. Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, Journal of Applied Probability, 23:4 (1986), 1019  crossref
    10. Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, J. Appl. Probab., 23:04 (1986), 1019  crossref
    11. Ergodic Theorems, 1985, 321  crossref
    12. Manfred Wolff, “Products of random varibles depending on a random walk”, Monatshefte f�r Mathematik, 88:2 (1979), 171  crossref
    13. Arun P. Sanghvi, “Sequential games as stochastic processes”, Stochastic Processes and their Applications, 6:3 (1978), 323  crossref
    14. A. Mukherjea, “Limit theorems for probability measures on non-compact groups and semi-groups”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 33:4 (1976), 273  crossref
    15. Arunava Mukherjea, Nicolas A. Tserpes, Lecture Notes in Mathematics, 547, Measures on Topological Semigroups: Convolution Products and Random Walks, 1976, 1  crossref
    16. Manfred Wolff, “�ber Produkte abh�ngiger zufalliger Ver�nderlicher mit Werten in einer kompakten Halbgruppe”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 35:3 (1976), 253  crossref
    17. Mathematics in Science and Engineering, 84, Markov Processes and Learning Models, 1972, 263  crossref
    18. S. Natarajan, T. E. S. Raghavan, K. Viswanath, “On Stochastic Matrices and Kernels”, Theory Probab. Appl., 12:2 (1967), 294–297  mathnet  mathnet  crossref
    19. A. Tortrat, “Lois tendues ? sur un demi-groupe topologique compl�tement simple X”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 6:2 (1966), 145  crossref
    20. M Rosenblatt, “Products of independent identically distributed stochastic matrices”, Journal of Mathematical Analysis and Applications, 11 (1965), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :271
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025