Abstract:
In the paper we study limit properties of equicontinuous (nearly periodic) positive operators which transform continuous functions into continuous ones. The domain of definition of the functions is a compact Hausdorff space XX. Section 1 contains some preliminary information. In Section 2, positive Markov operators are considered. A decomposition of part of the space XX into ergodic sub-parts is obtained, which is analogous to the decomposition of Krylov and Bogolyubov. In the next section eigenfunctions of positive operators are studied which correspond to eigenvalues with maximal absolute values. The theory of Perron-Frobenius is generalized to the situation considered. Section 4 is devoted to the investigation of the asymptotic behavior of the powers TnTn of Markov transition operators. Finally, in Section 5, we consider the asymptotic behavior of the convolutions νnνn, n=1,2,⋯n=1,2,⋯, of a regular measure on a compact topological subgroup. Some results obtained in the previous sections are used for the study of this question.
This publication is cited in the following 21 articles:
Hui Xiao, Ion Grama, Quansheng Liu, “Edgeworth Expansion and Large Deviations for the Coefficients of Products of Positive Random Matrices”, J Theor Probab, 38:2 (2025)
Y. Guivarc'h, É. Le Page, “Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions”, Ann. Inst. H. Poincaré Probab. Statist., 52:2 (2016)
Richard A. Davis, Keh-Shin Lii, Dimitris N. Politis, Selected Works of Murray Rosenblatt, 2011, 23
David R. Brillinger, Richard A. Davis, “A Conversation with Murray Rosenblatt”, Statist. Sci., 24:1 (2009)
M. Rosenblatt, “An example and transition function equicontinuity”, Statistics & Probability Letters, 76:18 (2006), 1961
W.J. Anderson, N. Ward-Anderson, “A Further Application of the deLeeuw-Glickstein Theorem”, Rocky Mountain J. Math., 29:1 (1999)
Andr�s Zempl�ni, “On the heredity of Hun and Hungarian property”, J Theor Probab, 3:4 (1990), 599
Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, J. Appl. Probab., 23:04 (1986), 1019
Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, Journal of Applied Probability, 23:4 (1986), 1019
Walter Van Assche, “Products of 2 × 2 stochastic matrices with random entries”, J. Appl. Probab., 23:04 (1986), 1019
Ergodic Theorems, 1985, 321
Manfred Wolff, “Products of random varibles depending on a random walk”, Monatshefte f�r Mathematik, 88:2 (1979), 171
Arun P. Sanghvi, “Sequential games as stochastic processes”, Stochastic Processes and their Applications, 6:3 (1978), 323
A. Mukherjea, “Limit theorems for probability measures on non-compact groups and semi-groups”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 33:4 (1976), 273
Arunava Mukherjea, Nicolas A. Tserpes, Lecture Notes in Mathematics, 547, Measures on Topological Semigroups: Convolution Products and Random Walks, 1976, 1
Manfred Wolff, “�ber Produkte abh�ngiger zufalliger Ver�nderlicher mit Werten in einer kompakten Halbgruppe”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 35:3 (1976), 253
Mathematics in Science and Engineering, 84, Markov Processes and Learning Models, 1972, 263
S. Natarajan, T. E. S. Raghavan, K. Viswanath, “On Stochastic Matrices and Kernels”, Theory Probab. Appl., 12:2 (1967), 294–297
A. Tortrat, “Lois tendues ? sur un demi-groupe topologique compl�tement simple X”, Z. Wahrscheinlichkeitstheorie verw Gebiete, 6:2 (1966), 145
M Rosenblatt, “Products of independent identically distributed stochastic matrices”, Journal of Mathematical Analysis and Applications, 11 (1965), 1