Abstract:
Two-sided bounds are constructed for a density function p(u,a) of a random variable |Y−a|2, where Y is a Gaussian random element in a Hilbert space with zero mean. The estimates are sharp in the sense that starting from large enough u the ratio of upper bound to lower bound equals 8 and does not depend on any parameters of a distribution of |Y−a|2. The estimates imply two-sided bounds for probabilities P(|Y−a|>r)
Keywords:
Gaussian measure, tail behavior, noncentral χ2-distribution, distribution of quadratic forms.
Citation:
G. Christoph, Yu. V. Prokhorov, V. V. Ulyanov, “On distribution of quadratic forms in Gaussian random variables”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 301–312; Theory Probab. Appl., 40:2 (1995), 250–260
\Bibitem{ChrProUly95}
\by G.~Christoph, Yu.~V.~Prokhorov, V.~V.~Ulyanov
\paper On distribution of quadratic forms in Gaussian random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 2
\pages 301--312
\mathnet{http://mi.mathnet.ru/tvp3478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346468}
\zmath{https://zbmath.org/?q=an:0853.60010}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 2
\pages 250--260
\crossref{https://doi.org/10.1137/1140028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE35900005}
Linking options:
https://www.mathnet.ru/eng/tvp3478
https://www.mathnet.ru/eng/tvp/v40/i2/p301
This publication is cited in the following 9 articles:
Gerd Christoph, Vladimir V. Ulyanov, Springer Proceedings in Mathematics & Statistics, 371, Recent Developments in Stochastic Methods and Applications, 2021, 215
Sergey G. Bobkov, Alexey A. Naumov, Vladimir V. Ulyanov, Springer Proceedings in Mathematics & Statistics, 371, Recent Developments in Stochastic Methods and Applications, 2021, 178
Yasunori Fujikoshi, Vladimir V. Ulyanov, SpringerBriefs in Statistics, Non-Asymptotic Analysis of Approximations for Multivariate Statistics, 2020, 81
“Abstracts of talks given at the 3rd International Conference on Stochastic Methods”, Theory Probab. Appl., 64:1 (2019), 124–169
Goetze F. Naumov A. Spokoiny V. Ulyanov V., “Large Ball Probabilities, Gaussian Comparison and Anti-Concentration”, Bernoulli, 25:4A (2019), 2538–2563
Naumov A.A., Spokoiny V.G., Tavyrikov Yu.E., Ulyanov V.V., “Nonasymptotic Estimates For the Closeness of Gaussian Measures on Balls”, Dokl. Math., 98:2 (2018), 490–493
V. V. Ulyanov, “On properties of polynomials in random elements”, Theory Probab. Appl., 60:2 (2016), 325–336
Gerd Christoph, Vladimir V. Ulyanov, Yasunori Fujikoshi, Springer Proceedings in Mathematics & Statistics, 33, Prokhorov and Contemporary Probability Theory, 2013, 239
L. V. Rozovskii, “On Gaussian Measure of Balls in a Hilbert Space”, Theory Probab. Appl., 53:2 (2009), 357–364