Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1995, Volume 40, Issue 2, Pages 260–269 (Mi tvp3475)  

This article is cited in 3 scientific papers (total in 3 papers)

Unimprovable exponential bounds for distributions of sums of a random number of random variables

A. A. Borovkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract: The basic object of the study is the asymptotic behavior of P(Zν>t) as t for sums Zν of random number ν of random variables ζ1,ζ2, . It was established in [1] that, if conditional “with respect to the past” probabilities of the events {ζk>t} are dominated by a function δ1(t), P(ν>t)<δ2(t), and the functions δ1 and δ2 are close to power functions, then P(Zν>t)<cmax(δ1(t),δ2(t)), c=const, and this bound cannot be improved. In the present paper, we study the asymptotics of P(Zν>t) in the case when the functions δ1 and δ2 are exponential. The nature of unimprovable bounds for P(Zν>t) turns out in this case to be different.
Keywords: sums of random number of random variables, stopped sums, large deviations, exponential bounds.
Received: 16.12.1991
English version:
Theory of Probability and its Applications, 1995, Volume 40, Issue 2, Pages 230–237
DOI: https://doi.org/10.1137/1140026
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, “Unimprovable exponential bounds for distributions of sums of a random number of random variables”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 260–269; Theory Probab. Appl., 40:2 (1995), 230–237
Citation in format AMSBIB
\Bibitem{Bor95}
\by A.~A.~Borovkov
\paper Unimprovable exponential bounds for distributions of sums of a~random number of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 2
\pages 260--269
\mathnet{http://mi.mathnet.ru/tvp3475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346465}
\zmath{https://zbmath.org/?q=an:0852.60018|0842.60016}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 2
\pages 230--237
\crossref{https://doi.org/10.1137/1140026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE35900003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3475
  • https://www.mathnet.ru/eng/tvp/v40/i2/p260
  • This publication is cited in the following 3 articles:
    1. Jithin K. Sreedharan, Vinod Sharma, “Spectrum sensing using distributed sequential detection via noisy reporting MAC”, Signal Processing, 106 (2015), 159  crossref
    2. Theodosopoulos T., “A reversion of the Chernoff bound”, Statistics & Probability Letters, 77:5 (2007), 558–565  crossref  mathscinet  zmath  isi
    3. Vinod Sharma, “Queueing systems with random service rate”, Performance Evaluation, 40:4 (2000), 223  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :84
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025