Abstract:
The basic object of the study is the asymptotic behavior of P(Zν>t) as t→∞ for sums Zν of random number ν of random variables ζ1,ζ2,… . It was established in [1] that, if conditional “with respect to the past” probabilities of the events {ζk>t} are dominated by a function δ1(t), P(ν>t)<δ2(t), and the functions δ1 and δ2 are close to power functions, then P(Zν>t)<cmax(δ1(t),δ2(t)), c=const, and this bound cannot be improved. In the present paper, we study the asymptotics of P(Zν>t) in the case when the functions δ1 and δ2 are exponential. The nature of unimprovable bounds for P(Zν>t) turns out in this case to be different.
Keywords:
sums of random number of random variables, stopped sums, large deviations, exponential bounds.
Citation:
A. A. Borovkov, “Unimprovable exponential bounds for distributions of sums of a random number of random variables”, Teor. Veroyatnost. i Primenen., 40:2 (1995), 260–269; Theory Probab. Appl., 40:2 (1995), 230–237
\Bibitem{Bor95}
\by A.~A.~Borovkov
\paper Unimprovable exponential bounds for distributions of sums of a~random number of random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1995
\vol 40
\issue 2
\pages 260--269
\mathnet{http://mi.mathnet.ru/tvp3475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1346465}
\zmath{https://zbmath.org/?q=an:0852.60018|0842.60016}
\transl
\jour Theory Probab. Appl.
\yr 1995
\vol 40
\issue 2
\pages 230--237
\crossref{https://doi.org/10.1137/1140026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE35900003}
Linking options:
https://www.mathnet.ru/eng/tvp3475
https://www.mathnet.ru/eng/tvp/v40/i2/p260
This publication is cited in the following 3 articles:
Jithin K. Sreedharan, Vinod Sharma, “Spectrum sensing using distributed sequential detection via noisy reporting MAC”, Signal Processing, 106 (2015), 159
Theodosopoulos T., “A reversion of the Chernoff bound”, Statistics & Probability Letters, 77:5 (2007), 558–565
Vinod Sharma, “Queueing systems with random service rate”, Performance Evaluation, 40:4 (2000), 223