Abstract:
The central limit theorem is proved for independent identically distributed random elements having strong second order moments with values in a Banach space with a Shauder basis. It is shown that, if X is a G-space, then lp{X}, 2⩽p<∞, is a space of the same type. The central limit theorem is also proved for the case when 1⩽p⩽2 and X is a G-space and for lp{ls}-spaces where 1⩽p,s⩽2.
The strong law of large numbers in these spaces is studied.
Citation:
V. V. Kvaračheliya, Nguen Zuy Tien, “The central limit theorem and the strong law of large numbers in lp{X}-spaces, 1⩽p<+∞”, Teor. Veroyatnost. i Primenen., 21:4 (1976), 802–812; Theory Probab. Appl., 21:4 (1977), 780–790
\Bibitem{KvaNgu76}
\by V.~V.~Kvara{\v{c}}heliya, Nguen Zuy Tien
\paper The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p<+\infty$
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 4
\pages 802--812
\mathnet{http://mi.mathnet.ru/tvp3424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=431325}
\zmath{https://zbmath.org/?q=an:0382.60024}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 4
\pages 780--790
\crossref{https://doi.org/10.1137/1121090}
Linking options:
https://www.mathnet.ru/eng/tvp3424
https://www.mathnet.ru/eng/tvp/v21/i4/p802
This publication is cited in the following 1 articles:
Nguyen Duy Tien, “Sur le théorème des trois séries de Kolmogorov et la convergence en moyenne quadratique des martingales dans un espace de Banach”, Theory Probab. Appl., 24:4 (1980), 797–808