Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1976, Volume 21, Issue 4, Pages 718–726 (Mi tvp3418)  

This article is cited in 1 scientific paper (total in 2 paper)

On a representation of local martingales

R. Š. Lipcer

Moscow
Full-text PDF (552 kB) Citations (2)
Abstract: Let (Ω,F,P) be a probability space, (Ft), t0, be an increasing and right-continuous family of σ-subalgebras of F , and (ξt,Ft), t0, be a random process on (Ω,F,P) with continuous trajectories such that the process (ξtξ0,Ft) , t0, is a local martingale. Denote by (Fξt), t0, the family of σ-algebras σ(ξs,st) and by Q the restriction of the measure P onto the σ-algebra Fξ. Let Q be another probability measure on the measurable space (Ω,Fξ) such that
(I) QQ,
(II) the process (ξtξ0,Fξt,Q), t0, is a local martingale,
(III) the restrictions of the measures Q and Q onto the σ-algebra Fξ0 coincide.
The main result of this paper is: if every measure Q, which satisfies conditions (I)–(III), coincides with Q, then any local martingale (yt,Fξt), t0, has a representation of the form
yt=y0+t0f(s)dξs.
Received: 30.01.1976
English version:
Theory of Probability and its Applications, 1977, Volume 21, Issue 4, Pages 698–705
DOI: https://doi.org/10.1137/1121084
Bibliographic databases:
Language: Russian
Citation: R. Š. Lipcer, “On a representation of local martingales”, Teor. Veroyatnost. i Primenen., 21:4 (1976), 718–726; Theory Probab. Appl., 21:4 (1977), 698–705
Citation in format AMSBIB
\Bibitem{Lip76}
\by R.~{\v S}.~Lipcer
\paper On a~representation of local martingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 4
\pages 718--726
\mathnet{http://mi.mathnet.ru/tvp3418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=433589}
\zmath{https://zbmath.org/?q=an:0385.60051}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 4
\pages 698--705
\crossref{https://doi.org/10.1137/1121084}
Linking options:
  • https://www.mathnet.ru/eng/tvp3418
  • https://www.mathnet.ru/eng/tvp/v21/i4/p718
  • This publication is cited in the following 2 articles:
    1. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
    2. Franz Konecny, Probability and Statistical Inference, 1982, 171  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :164
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025