Abstract:
Let (Ω,F,P) be a probability space, (Ft), t⩾0, be an increasing and right-continuous family of σ-subalgebras of F , and (ξt,Ft), t⩾0, be a random process on (Ω,F,P) with continuous trajectories such that the process (ξt−ξ0,Ft) , t⩾0, is a local martingale. Denote by (Fξt), t⩾0, the family of σ-algebras σ(ξs,s⩽t) and by Q the restriction of the measure P onto the σ-algebra Fξ∞. Let Q′ be another probability measure on the measurable space (Ω,Fξ∞) such that
(I) Q′≪Q,
(II) the process (ξt−ξ0,Fξt,Q′), t⩾0, is a local martingale,
(III) the restrictions of the measures Q and Q′ onto the σ-algebra Fξ0 coincide.
The main result of this paper is: if every measure Q′, which satisfies conditions (I)–(III), coincides with Q, then any local martingale (yt,Fξt), t⩾0, has a representation of the form
yt=y0+∫t0f(s)dξs.
Citation:
R. Š. Lipcer, “On a representation of local martingales”, Teor. Veroyatnost. i Primenen., 21:4 (1976), 718–726; Theory Probab. Appl., 21:4 (1977), 698–705
\Bibitem{Lip76}
\by R.~{\v S}.~Lipcer
\paper On a~representation of local martingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 4
\pages 718--726
\mathnet{http://mi.mathnet.ru/tvp3418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=433589}
\zmath{https://zbmath.org/?q=an:0385.60051}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 4
\pages 698--705
\crossref{https://doi.org/10.1137/1121084}
Linking options:
https://www.mathnet.ru/eng/tvp3418
https://www.mathnet.ru/eng/tvp/v21/i4/p718
This publication is cited in the following 2 articles:
V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13
Franz Konecny, Probability and Statistical Inference, 1982, 171