Abstract:
Let $\xi(t)$ be a process with independent increments. In the paper, the limit distribution for the size $\chi$ of the first jump over an «infinite» bound and estimates with absolute constants for $\mathbf M\chi^s$ are obtained.
Citation:
A. A. Mogul'skiǐ, “On the distribution of the first jump for a process with independent increments”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 486–496; Theory Probab. Appl., 21:3 (1977), 470–481
\Bibitem{Mog76}
\by A.~A.~Mogul'ski{\v\i}
\paper On the distribution of the first jump for a~process with independent increments
\jour Teor. Veroyatnost. i Primenen.
\yr 1976
\vol 21
\issue 3
\pages 486--496
\mathnet{http://mi.mathnet.ru/tvp3394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=420877}
\zmath{https://zbmath.org/?q=an:0361.60038}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 21
\issue 3
\pages 470--481
\crossref{https://doi.org/10.1137/1121060}
Linking options:
https://www.mathnet.ru/eng/tvp3394
https://www.mathnet.ru/eng/tvp/v21/i3/p486
This publication is cited in the following 8 articles:
V. I. Lotov, V. R. Khodzhibaev, “O raspredelenii chisla peresechenii polosy traektoriyami sluchainogo protsessa s nezavisimymi prirascheniyami”, Sib. elektron. matem. izv., 20:2 (2023), 1013–1025
V. I. Lotov, V. R. Khodzhibaev, “Neravenstva dlya srednego znacheniya momenta pervogo vykhoda iz polosy dlya protsessa Levi”, Sib. elektron. matem. izv., 19:2 (2022), 852–860
V. I. Lotov, V. R. Khodzhibaev, “Inequalities in a two-sided boundary crossing problem for stochastic processes”, Siberian Math. J., 62:3 (2021), 455–461
V. I. Lotov, V. R. Khodzhibaev, “O raspredelenii maksimuma traektorii sluchainogo protsessa s pereklyucheniyami”, Sib. elektron. matem. izv., 17 (2020), 807–813
M. Beibel, “Generalized parking problems for levy processes”, Sequential Analysis, 17:2 (1998), 151
A. A. Novikov, V. P. Dragalin, Lecture Notes in Mathematics, 1299, Probability Theory and Mathematical Statistics, 1988, 366
V. P. Dragalin, A. A. Novikov, “The Asymptotic Solution of the Kiefer–Weiss Problem for Processes with Independent Increments”, Theory Probab. Appl., 32:4 (1987), 617–627
N. S. Bratiichuk, “On the size of the first jump for a process with independent increments”, Russian Math. Surveys, 34:2 (1979), 219–220