Abstract:
For the a.s. convergence of the stochastic approximation procedure
dXs=α(s)[▽f(Xs)+φ(s,Xs)]ds+β(s)σ(s,Xs)dWs
to a maximum point of f, the following condition is proved to be necessary and sufficient: for any λ>0 ∫∞0exp(−λγ−2(t))dt<∞
where dt=α(s)ds; γ(t)=β(t)/√α(t).
Citation:
A. P. Korostelev, “A criterion for convergence of continuous stochastic approximation procedures”, Teor. Veroyatnost. i Primenen., 22:3 (1977), 595–602; Theory Probab. Appl., 22:3 (1978), 584–591
This publication is cited in the following 1 articles:
A. P. Korostelev, “Damping perturbations of dynamic systems and convergence conditions for recursive stochastic procedures”, Theory Probab. Appl., 24:2 (1979), 302–321