Abstract:
Critical age-dependent branching process with $k$ types $N_1,N_2,\dots,N_k$ of particles are considered. We suppose that particles' reproduction power depends on their age. Let $z_j^i(t)$ be the number of particles of type $N_j$ at time $t$ given that at time $t=0$ there was only one particle of type $N_i$. We derive an asymptotic formula for the probability $\mathbf P\{z_1^i(t)+z_2^i(t)+\dots+z_k^i(t)>0\}$ as $t\to\infty$. The result obtained is analogous to that of Goldstein [2].
Citation:
V. A. Vatutin, “Asymptotic behaviour of the non-extinction probability for a critical branching process”, Teor. Veroyatnost. i Primenen., 22:1 (1977), 143–149; Theory Probab. Appl., 22:1 (1977), 140–146
\Bibitem{Vat77}
\by V.~A.~Vatutin
\paper Asymptotic behaviour of the non-extinction probability for a~critical branching process
\jour Teor. Veroyatnost. i Primenen.
\yr 1977
\vol 22
\issue 1
\pages 143--149
\mathnet{http://mi.mathnet.ru/tvp3163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=440723}
\zmath{https://zbmath.org/?q=an:0398.60085}
\transl
\jour Theory Probab. Appl.
\yr 1977
\vol 22
\issue 1
\pages 140--146
\crossref{https://doi.org/10.1137/1122013}
Linking options:
https://www.mathnet.ru/eng/tvp3163
https://www.mathnet.ru/eng/tvp/v22/i1/p143
This publication is cited in the following 3 articles:
Theory Probab. Appl., 67:1 (2022), 141–153
V. M. Šurenkov, “On the additive functionals of branching processes”, Theory Probab. Appl., 24:2 (1979), 396–401
V. A. Vatutin, “Asymptotic behavior of the survival probability for a decomposable branching process with replacements depending on the age of the particles”, Math. USSR-Sb., 31:1 (1977), 95–107