Abstract:
Let a=(at)a=(at), t∈[0,∞[t∈[0,∞[, be a predictable process with locally integrable variation, m=(mt)m=(mt) be a continuous local martingale, pp be a stochastic integer-valued measure on B([0,∞[)×B(Rd∖{0}) and λ be a dual predictable projection of p. The processes a and m take values in Rd, d⩾1.
The uniqueness and existence theorem is proved lor the solutions of a stochastic integral equation
Yt(ω)=Nt(ω)+∫t0d∑j=1fj(ω,s,Ys−(ω))dajs(ω)+∫t0d∑j=1gj(ω,s,Ys−(ω))dmjs(ω)+∫t0∫|u|⩽1h(ω,s,u,Ys−(ω))(p−λ)(ω,ds,du)+∫t0∫|u|>1h(ω,s,u,Ys−(ω))p(ω,ds,du),
where N=(Nt) is a known process the paths of which are right-hand continuous and have left-hand limits. The functions f(ω,s,x), g(ω,s,x), h(ω,s,u,x) satisfy the Lipschitz conditions in x and are predictable in other variables.
Citation:
L. I. Gal'čuk, “On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales”, Teor. Veroyatnost. i Primenen., 23:4 (1978), 782–795; Theory Probab. Appl., 23:4 (1979), 751–763
\Bibitem{Gal78}
\by L.~I.~Gal'{\v{c}}uk
\paper On the uniqueness and existence of solutions of stochastic equations with respect to semimartingales
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 4
\pages 782--795
\mathnet{http://mi.mathnet.ru/tvp3112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=516275}
\zmath{https://zbmath.org/?q=an:0422.60047|0391.60057}
\transl
\jour Theory Probab. Appl.
\yr 1979
\vol 23
\issue 4
\pages 751--763
\crossref{https://doi.org/10.1137/1123091}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1978JA77700007}
Linking options:
https://www.mathnet.ru/eng/tvp3112
https://www.mathnet.ru/eng/tvp/v23/i4/p782
This publication is cited in the following 32 articles:
Shaolin Ji, Rundong Xu, “A stochastic maximum principle for forward–backward stochastic control systems with quadratic generators and sample-wise constraints”, ESAIM: COCV, 30 (2024), 29
Nuha Alasmi, Bujar Gashi, 2024 UKACC 14th International Conference on Control (CONTROL), 2024, 248
Xiaomin Shi, Zuo Quan Xu, “Constrained mean-variance investment-reinsurance under the Cramér–Lundberg model with random coefficients”, ESAIM: COCV, 30 (2024), 61
Nuha Alasmi, Bujar Gashi, 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 2024, 848
Nuha Alasmi, Bujar Gashi, “Optimal Investment in a Market with Borrowing, the CIR Interest Rate Model, and the Heston Volatility Model”, IFAC-PapersOnLine, 58:17 (2024), 55
Panpan Zhang, Zuo Quan Xu, “Multidimensional Indefinite Stochastic Riccati Equations and Zero-Sum Stochastic Linear-Quadratic Differential Games with Non-Markovian Regime Switching”, SIAM J. Control Optim., 62:6 (2024), 3239
Abdullah Aljalal, Bujar Gashi, 2023 European Control Conference (ECC), 2023, 1
Bujar Gashi, Haochen Hua, “Optimal regulators for a class of nonlinear stochastic systems”, International Journal of Control, 96:1 (2023), 136
Nuha Alasmi, Bujar Gashi, 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), 2023, 01
Abdullah Aljalal, Bujar Gashi, 2022 UKACC 13th International Conference on Control (CONTROL), 2022, 143
Mingshang Hu, Shaolin Ji, Rundong Xu, “A Global Stochastic Maximum Principle for Forward-Backward Stochastic Control Systems with Quadratic Generators”, SIAM J. Control Optim., 60:3 (2022), 1791
Ying Hu, Xiaomin Shi, Zuo Quan Xu, “Constrained stochastic LQ control with regime switching and application to portfolio selection”, Ann. Appl. Probab., 32:1 (2022)
Abdullah Aljalal, Bujar Gashi, 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), 2022, 764
Guanxu Li, Zongyuan Huang, Zhen Wu, 2022 41st Chinese Control Conference (CCC), 2022, 1739
Leonid I. Galtchouk, Serge M. Pergamenshchikov, “Adaptive efficient analysis for big data ergodic diffusion models”, Stat Inference Stoch Process, 25:1 (2022), 127
Zongyuan Huang, Haiyang Wang, Zhen Wu, “A kind of optimal investment problem under inflation and uncertain time horizon”, Applied Mathematics and Computation, 375 (2020), 125084
Mohamed N. Abdelghani, Alexander V. Melnikov, “Existence and uniqueness of stochastic equations of optional semimartingales under monotonicity condition”, Stochastics, 92:1 (2020), 67
V. V. Lavrentyev, L. V. Nazarov, “A functional central limit theorem for Hilbert-valued martingales”, Lobachevskii J Math, 37:2 (2016), 138
Kai Du, “Solvability Conditions for Indefinite Linear Quadratic Optimal Stochastic Control Problems and Associated Stochastic Riccati Equations”, SIAM J. Control Optim., 53:6 (2015), 3673
Shanjian Tang, “Dynamic Programming for General Linear Quadratic Optimal Stochastic Control with Random Coefficients”, SIAM J. Control Optim., 53:2 (2015), 1082