Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1978, Volume 23, Issue 3, Pages 630–637 (Mi tvp3083)  

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

On the distribution of sums of independent Banach-space-valued random variables

I. F. Pinelis

Novosibirsk
Full-text PDF (482 kB) Citations (5)
Abstract: Probabilistic inequalities of [2] are generalized for the case of Banach-space-valued random variables with the help of the method due to V. V. Yurinski\u i [12]. As a consequence, sufficient conditions for the strong law of large numbers are given.
The results obtained are compared with known ones in this direction.
Received: 13.07.1976
English version:
Theory of Probability and its Applications, 1978, Volume 23, Issue 3, Pages 608–615
DOI: https://doi.org/10.1137/1123070
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. F. Pinelis, “On the distribution of sums of independent Banach-space-valued random variables”, Teor. Veroyatnost. i Primenen., 23:3 (1978), 630–637; Theory Probab. Appl., 23:3 (1978), 608–615
Citation in format AMSBIB
\Bibitem{Pin78}
\by I.~F.~Pinelis
\paper On the distribution of sums of independent Banach-space-valued random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1978
\vol 23
\issue 3
\pages 630--637
\mathnet{http://mi.mathnet.ru/tvp3083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=509737}
\zmath{https://zbmath.org/?q=an:0393.60011}
\transl
\jour Theory Probab. Appl.
\yr 1978
\vol 23
\issue 3
\pages 608--615
\crossref{https://doi.org/10.1137/1123070}
Linking options:
  • https://www.mathnet.ru/eng/tvp3083
  • https://www.mathnet.ru/eng/tvp/v23/i3/p630
  • This publication is cited in the following 5 articles:
    1. Ufa Math. J., 12:3 (2020), 97–106  mathnet  crossref  isi
    2. S. V. Nagaev, “Speed of convergence to the normal law in Hilbert space”, Theory Probab. Appl., 30:1 (1986), 19–37  mathnet  mathnet  crossref  isi
    3. B. A. Zalesskiǐ, V. V. Sazonov, “On the closeness of moments in normal approximation in Hilbert space”, Theory Probab. Appl., 28:2 (1984), 263–277  mathnet  mathnet  crossref  isi
    4. “Summary of reports presented at sessions of the probability and statistics seminar at the Mathematical Institute of the Siberian section of the USSR Academy of Sciences, 1980”, Theory Probab. Appl., 27:1 (1982), 206–210  mathnet  mathnet  crossref  isi
    5. V. V. Yurinskiǐ, “On the accuracy of Gaussian approximation for the probability of hitting a ball”, Theory Probab. Appl., 27:2 (1983), 280–289  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025