Abstract:
Some necessary and sufficient conditions for the factorial moments of the number of zeros of Gaussian stationary processes to be finite are established.
Citation:
T. L. Malevič, “On conditions for the moments of the number of zeros of Gaussian stationary processes to be finite”, Teor. Veroyatnost. i Primenen., 24:4 (1979), 741–753; Theory Probab. Appl., 24:4 (1980), 741–754
\Bibitem{Mal79}
\by T.~L.~Malevi{\v{c}}
\paper On conditions for the moments of the number of zeros of Gaussian stationary processes to be finite
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 4
\pages 741--753
\mathnet{http://mi.mathnet.ru/tvp2894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=550530}
\zmath{https://zbmath.org/?q=an:0441.60037|0418.60039}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 24
\issue 4
\pages 741--754
\crossref{https://doi.org/10.1137/1124087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979KW11900005}
Linking options:
https://www.mathnet.ru/eng/tvp2894
https://www.mathnet.ru/eng/tvp/v24/i4/p741
This publication is cited in the following 7 articles:
Sergei L. Semakov, “The First Achievement of a Given Level by a Random Process”, IEEE Trans. Inform. Theory, 70:10 (2024), 7162
Sergei Semakov, Aleksei Semakov, Ivan Semakov, 2023 62nd IEEE Conference on Decision and Control (CDC), 2023, 3820
Level Sets and Extrema of Random Processes and Fields, 2009, 373
T. L. Malevich, L. N. Volodina, “Some finiteness conditions for factorial moments of the number of zeros of Gaussian field zeros”, Theory Probab. Appl., 38:1 (1993), 27–45
A. K. Aleshkyavichene, “Probabilities of large deviations for U-statistics and von Mises functionals”, Theory Probab. Appl., 35:1 (1990), 1–14
R. N. Mirošin, “A simple criterion of the finiteness of moments of the number of zeros of a Gaussian stationary process”, Theory Probab. Appl., 29:3 (1985), 566–569
T. L. Malevič, “On conditions for the finiteness factorial moments of the number of zeros of Gaussian stationary processes”, Theory Probab. Appl., 29:3 (1985), 534–545