Abstract:
A sequence of processes Yk(t), t⩾0, is considered, Yk(t) being of the form: Yk(0)=x, Yk(t) are right continuous and dYk/dt=−1 everywhere except at point tki=∑il=1τlk, where Yk(tki)=γikYk(tki−0). Here {τik}∞i=1, {γik}∞i=1 for any fixed k, are independent sequences of independent identically distributed positive random variables. It is proved that, under some restrictions on τik and γik, Yk(t)converge to a diffusion process. The behaviour of this process as t→∞ is studied.
Citation:
G. Sh. Lev, “On convergence of semi-markov processes of multiplication with drift to a diffusion process”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 583–588; Theory Probab. Appl., 17:3 (1973), 551–556
\Bibitem{Lev72}
\by G.~Sh.~Lev
\paper On convergence of semi-markov processes of multiplication with drift to a~diffusion process
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 3
\pages 583--588
\mathnet{http://mi.mathnet.ru/tvp2672}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=305492}
\zmath{https://zbmath.org/?q=an:0299.60061}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 3
\pages 551--556
\crossref{https://doi.org/10.1137/1117067}
Linking options:
https://www.mathnet.ru/eng/tvp2672
https://www.mathnet.ru/eng/tvp/v17/i3/p583
This publication is cited in the following 1 articles:
M. J. Kel'bert, “On the convergence of discrete schemes to continuous ones in some problems of sequential analysis”, Theory Probab. Appl., 21:3 (1977), 605–614