Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 3, Pages 450–457 (Mi tvp2657)  

This article is cited in 2 scientific papers (total in 2 papers)

Limit theorems for Markov random sets

L. I. Piterbarg

Moscow
Full-text PDF (381 kB) Citations (2)
Abstract: In the paper a Markov set is considered. Results are obtained like those due to K. Itô and H. P. McKean on the Hausdorf measure of zeroes of a Wiener process.
Received: 26.01.1971
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 3, Pages 426–433
DOI: https://doi.org/10.1137/1117052
Bibliographic databases:
Language: Russian
Citation: L. I. Piterbarg, “Limit theorems for Markov random sets”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 450–457; Theory Probab. Appl., 17:3 (1973), 426–433
Citation in format AMSBIB
\Bibitem{Pit72}
\by L.~I.~Piterbarg
\paper Limit theorems for Markov random sets
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 3
\pages 450--457
\mathnet{http://mi.mathnet.ru/tvp2657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=307364}
\zmath{https://zbmath.org/?q=an:0323.60038}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 3
\pages 426--433
\crossref{https://doi.org/10.1137/1117052}
Linking options:
  • https://www.mathnet.ru/eng/tvp2657
  • https://www.mathnet.ru/eng/tvp/v17/i3/p450
  • This publication is cited in the following 2 articles:
    1. B. A. Rogozin, “Ladder subordinators for processes with independent increments”, Theory Probab. Appl., 36:3 (1991), 623–629  mathnet  mathnet  crossref  isi
    2. N. H. Bingham, “Fluctuation theory in continuous time”, Advances in Applied Probability, 7:4 (1975), 705  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :70
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025