Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 3, Pages 584–590 (Mi tvp2603)  

This article is cited in 15 scientific papers (total in 15 papers)

The laws of large numbers for identically distributed Banach space valued random variables

T. A. Azlarov, N. A. Volodin

Taškent
Abstract: Let 0<α<2 and let Bα be an arbitrary Banach space if 0<α1 and Bα be an α-type space if 1<α<2 (definition of α-type space see [1]); let Bα be separable when α1. Without loss of generality we suppose that EX=0 if E where X is Banach space valued random variable.
Theorem.{\it Let 0<\alpha<2 and \{X_n\} be a sequence of independent identically distributed B_{\alpha}-valued random variables, S_n=X_1+\dots+X_n. The following conditions are equivalent.}
I. \mathbf E\|X_1\|^\alpha<\infty.
II. \|n^{-1/\alpha}S_n\|\to 0 a. s., n\to\infty.
III. \mathbf E\|S_n\|^{\alpha}=o(n), n\to\infty.
IV. \displaystyle\sum_{n=1}^{\infty} n^{-1}\mathbf P\{\|S_n\|>\varepsilon n^{1/\alpha}\}<\infty for every \varepsilon>0.
Received: 06.02.1979
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 3, Pages 573–580
DOI: https://doi.org/10.1137/1126062
Bibliographic databases:
Language: Russian
Citation: T. A. Azlarov, N. A. Volodin, “The laws of large numbers for identically distributed Banach space valued random variables”, Teor. Veroyatnost. i Primenen., 26:3 (1981), 584–590; Theory Probab. Appl., 26:3 (1982), 573–580
Citation in format AMSBIB
\Bibitem{AzlVol81}
\by T.~A.~Azlarov, N.~A.~Volodin
\paper The laws of large numbers for identically distributed Banach space valued random variables
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 3
\pages 584--590
\mathnet{http://mi.mathnet.ru/tvp2603}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=627864}
\zmath{https://zbmath.org/?q=an:0487.60009|0466.60007}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 3
\pages 573--580
\crossref{https://doi.org/10.1137/1126062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981PA76400011}
Linking options:
  • https://www.mathnet.ru/eng/tvp2603
  • https://www.mathnet.ru/eng/tvp/v26/i3/p584
  • This publication is cited in the following 15 articles:
    1. Shouto Yonekura, Shonosuke Sugasawa, “Adaptation of the tuning parameter in general Bayesian inference with robust divergence”, Stat Comput, 33:2 (2023)  crossref
    2. M. K. Ilienko, “A note on the Kolmogorov–Marcinkiewicz–Zygmund type strong law of large numbers for elements of autoregression sequences”, Theory Stoch. Process., 22(38):1 (2017), 22–29  mathnet  mathscinet  zmath
    3. Deli Li, Yongcheng Qi, Andrew Rosalsky, Fields Institute Communications, 76, Asymptotic Laws and Methods in Stochastics, 2015, 129  crossref
    4. K. N. Pankov, “Otsenki skorosti skhodimosti v predelnykh teoremakh dlya sovmestnykh raspredelenii chasti kharakteristik sluchainykh dvoichnykh otobrazhenii”, PDM, 2012, no. 4(18), 14–30  mathnet
    5. Gan Shi-xin, “On the strong law of large numbers for non-independentB-valued random variables”, Wuhan Univ. J. Nat. Sci., 9:1 (2004), 13  crossref
    6. Hanying Liang, “Equivalence of Complete Convergence and Law of Large Numbers for B-Valued Random Elements”, Chin. Ann. of Math., 21:1 (2000), 83  crossref
    7. Deli Li, M. Bhaskara Rao, Tiefeng Jiang, Xiangchen Wang, “Complete convergence and almost sure convergence of weighted sums of random variables”, J Theor Probab, 8:1 (1995), 49  crossref
    8. Xiangchen Wang, M.Bhaskara Rao, Yang Xiaoyun, “Convergence Rates on Strong Laws of Large Numbers for Arrays of Rowwise Independent Elements”, Stochastic Analysis and Applications, 11:1 (1993), 115  crossref
    9. Bernard Heinkel, Probability in Banach Spaces, 8:, 1992, 325  crossref
    10. Andr´ Adler, Andrew Rosalsky, Robert L. Taylor, “On the Azlarov-Volodin theorem for sums of I.I.D. Random elements in banach spaces”, Stochastic Analysis and Applications, 10:5 (1992), 501  crossref
    11. Ryoichi Shimizu, “Error bounds for asymptotic expansion of the scale mixtures of the normal distribution”, Ann Inst Stat Math, 39:3 (1987), 611  crossref
    12. Victor Hernández, Juan J Romo, “On the type hypothesis for the strong law of large numbers”, Statistics & Probability Letters, 5:3 (1987), 193  crossref
    13. Víctor Hernández, Juan J. Romo, “Generalizacion del teorema de Hanson y Russo para B-variables aleatorias”, TDE, 1:1 (1986), 42  crossref
    14. Ryoichi Shimizu, “Inequalities for a distribution with monotone hazard rate”, Ann Inst Stat Math, 38:2 (1986), 195  crossref
    15. Bernard Heinkel, Lecture Notes in Mathematics, 1080, Probability Theory on Vector Spaces III, 1984, 90  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :129
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025