Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 2, Pages 342–349 (Mi tvp2589)  

This article is cited in 34 scientific papers (total in 34 papers)

Short Communications

The distribution of the first hit for stable and asymptotically stable walks on an interval

B. A. Rogozin

Novosibirsk
Abstract: Let {ξ(t);t0} be a strongly stable process, τ=inf.
Formulas for \mathbf P\{1\le\xi(\tau)<1+y\mid\xi(0)=x\}, and \mathbf P\{0\ge\xi(\tau)>-y\mid\xi(0)=x\}, 0\le x\le1, y\ge0, are derived and applied to random walks.
Received: 26.11.1970
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 2, Pages 332–338
DOI: https://doi.org/10.1137/1117035
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. A. Rogozin, “The distribution of the first hit for stable and asymptotically stable walks on an interval”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 342–349; Theory Probab. Appl., 17:2 (1973), 332–338
Citation in format AMSBIB
\Bibitem{Rog72}
\by B.~A.~Rogozin
\paper The distribution of the first hit for stable and asymptotically stable walks on an interval
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 342--349
\mathnet{http://mi.mathnet.ru/tvp2589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=300349}
\zmath{https://zbmath.org/?q=an:0272.60050}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 332--338
\crossref{https://doi.org/10.1137/1117035}
Linking options:
  • https://www.mathnet.ru/eng/tvp2589
  • https://www.mathnet.ru/eng/tvp/v17/i2/p342
  • This publication is cited in the following 34 articles:
    1. Kees van Schaik, Alexander R. Watson, Xin Xu, “Optimal stopping of the stable process with state-dependent killing”, Bernoulli, 31:1 (2025)  crossref
    2. Alexander R. Watson, “A growth-fragmentation model connected to the ricocheted stable process”, J. Appl. Probab., 60:2 (2023), 493  crossref
    3. Jacek Mucha, “Spectral theory for one-dimensional (non-symmetric) stable processes killed upon hitting the origin”, Electron. J. Probab., 26:none (2021)  crossref
    4. Leif Döring, Andreas E. Kyprianou, “Entrance and exit at infinity for stable jump diffusions”, Ann. Probab., 48:3 (2020)  crossref
    5. Asem Wardak, “First passage leapovers of Lévy flights and the proper formulation of absorbing boundary conditions”, J. Phys. A: Math. Theor., 53:37 (2020), 375001  crossref
    6. Leif Döring, Andreas E. Kyprianou, Philip Weissmann, “Stable processes conditioned to avoid an interval”, Stochastic Processes and their Applications, 130:2 (2020), 471  crossref
    7. Leif Döring, Alexander R. Watson, Philip Weissmann, “Lévy processes with finite variance conditioned to avoid an interval”, Electron. J. Probab., 24:none (2019)  crossref
    8. Fatih Dinc, “Analytical estimation for the impulse response of an n-dimensional diffusion channel with an absorbing receiver”, J. Phys. A: Math. Theor., 52:11 (2019), 11LT01  crossref
    9. Pierre Lenthe, Philip Weissmann, “Completely asymmetric stable processes conditioned to avoid an interval”, J. Appl. Probab., 56:4 (2019), 1187  crossref
    10. Julien Letemplier, Thomas Simon, “On the law of homogeneous stable functionals”, ESAIM: PS, 23 (2019), 82  crossref
    11. Kyprianou A.E., Vakeroudis S.M., “Stable Windings At the Origin”, Stoch. Process. Their Appl., 128:12 (2018), 4309–4325  crossref  mathscinet  zmath  isi  scopus
    12. Andreas E. Kyprianou, “Deep factorisation of the stable process”, Electron. J. Probab., 21:none (2016)  crossref
    13. Bartłomiej Dybiec, Ewa Gudowska-Nowak, Aleksei Chechkin, “To hit or to pass it over—remarkable transient behavior of first arrivals and passages for Lévy flights in finite domains”, J. Phys. A: Math. Theor., 49:50 (2016), 504001  crossref
    14. Christophe Profeta, Thomas Simon, Lecture Notes in Mathematics, 2168, Séminaire de Probabilités XLVIII, 2016, 325  crossref
    15. Kolokoltsov V., “on Fully Mixed and Multidimensional Extensions of the Caputo and Riemann-Liouville Derivatives, Related Markov Processes and Fractional Differential Equations”, Fract. Calc. Appl. Anal., 18:4 (2015), 1039–1073  crossref  isi
    16. A. E. Kyprianou, A. R. Watson, Lecture Notes in Mathematics, 2123, Séminaire de Probabilités XLVI, 2014, 333  crossref
    17. Andreas E. Kyprianou, Juan Carlos Pardo, Alexander R. Watson, “Hitting distributions of \alpha-stable processes via path censoring and self-similarity”, Ann. Probab., 42:1 (2014)  crossref
    18. Andreas E. Kyprianou, Universitext, Fluctuations of Lévy Processes with Applications, 2014, 197  crossref
    19. A. E. Kyprianou, J. C. Pardo, A. R. Watson, “The extended hypergeometric class of Lévy processes”, Journal of Applied Probability, 51:A (2014), 391  crossref
    20. Andreas E. Kyprianou, Universitext, Fluctuations of Lévy Processes with Applications, 2014, 231  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:285
    Full-text PDF :146
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025