Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 2, Pages 335–349 (Mi tvp2514)  

This article is cited in 11 scientific papers (total in 11 papers)

Upper bounds for the concentration function in a Hilbert space

G. Siegel

Leipzig
Abstract: New bounds (analogous to the bounds obtained by Kolmogorov, Rogozin and Esseen) are derived for the concentration function of the sums of independent random variables with values in a Hilbert space. In particular, the absolute constants used in the estimates don't depend on the dimension in the finite-dimensional space. Further, some limit theorems for the concentration function and some estimates for the concentration functions of infinitely divisible distributions are given.
Received: 25.05.1978
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 2, Pages 328–343
DOI: https://doi.org/10.1137/1126032
Bibliographic databases:
Language: Russian
Citation: G. Siegel, “Upper bounds for the concentration function in a Hilbert space”, Teor. Veroyatnost. i Primenen., 26:2 (1981), 335–349; Theory Probab. Appl., 26:2 (1982), 328–343
Citation in format AMSBIB
\Bibitem{Sie81}
\by G.~Siegel
\paper Upper bounds for the concentration function in a~Hilbert space
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 2
\pages 335--349
\mathnet{http://mi.mathnet.ru/tvp2514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=616624}
\zmath{https://zbmath.org/?q=an:0501.60021|0487.60014}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 2
\pages 328--343
\crossref{https://doi.org/10.1137/1126032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NJ71600007}
Linking options:
  • https://www.mathnet.ru/eng/tvp2514
  • https://www.mathnet.ru/eng/tvp/v26/i2/p335
  • This publication is cited in the following 11 articles:
    1. S. M. Ananevskii, “O konstantakh v neravenstvakh Kolmogorova–Rogozina i Kestena v gilbertovom prostranstve”, Veroyatnost i statistika. 30, Zap. nauchn. sem. POMI, 501, POMI, SPb., 2021, 8–23  mathnet
    2. Chi Zh., “On a Multivariate Strong Renewal Theorem”, J. Theor. Probab., 31:3 (2018), 1235–1272  crossref  isi
    3. Ya. S. Golikova, “Ob uluchshenii otsenki rasstoyaniya mezhdu raspredeleniyami posledovatelnykh summ nezavisimykh sluchainykh velichin”, Veroyatnost i statistika. 27, Zap. nauchn. sem. POMI, 474, POMI, SPb., 2018, 118–123  mathnet
    4. A. L. Miroshnikov, N. V. Miller, N. I. Popova, Yu. V. Shvets, “O nekotorykh voprosakh integrirovaniya v mnogomernykh prostranstvakh”, Mezhdunar. nauch.-issled. zhurn., 2017, no. 12-5(66), 30–35  mathnet  crossref
    5. E. L. Maistrenko, “Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables”, J. Math. Sci. (N. Y.), 229:6 (2018), 741–743  mathnet  crossref  mathscinet
    6. Yu. S. Eliseeva, “Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables”, J. Math. Sci. (N. Y.), 204:1 (2015), 78–89  mathnet  crossref  mathscinet
    7. A. L. Miroshnikov, “Estimates of the Multidimensional Levy's Concentration Function”, Theory Probab. Appl., 34:3 (1989), 535–540  mathnet  mathnet  crossref  isi
    8. A. P. Suchkov, N. G. Ushakov, “Exponential Bounds for Decreasing of the Maximal Probability in Infinite Dimensional Spaces”, Theory Probab. Appl., 34:4 (1989), 735–738  mathnet  mathnet  crossref  isi
    9. A. G. Postnikov, A. A. Yudin, “An Estimate of the Maximum Probability for the Sum of Independent Vectors”, Theory Probab. Appl., 32:2 (1987), 331–334  mathnet  mathnet  crossref  isi
    10. G. Siegel, “Vague convergence for convolutions and for infinitely divisible functions”, Theory Probab. Appl., 31:1 (1987), 152–159  mathnet  mathnet  crossref  isi
    11. N. G. Ušakov, “Upper bounds for the maximum probability for sums of independent random vectors”, Theory Probab. Appl., 30:1 (1986), 38–49  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025