Abstract:
We prove some uniqueness theorems for functions $F(x)$ of bounded variation (and for distribution functions) with given values on a halfline. The uniqueness is proved for functions belonging to the classes of functions $F(x)$ such that the characteristic function
$$
\varphi(t;F)=\int_{-\infty}^\infty e^{itx}\,dF(x)
$$
is analytic in the strip $0<\operatorname{Im}t<H<\infty$, $\varphi(t;F)\ne 0$ ($0<\operatorname{Im}t<H$) and $\varphi(t;F)$ grows rather quickly when $\operatorname{Im}t\uparrow H$.
Citation:
N. M. Blank, “On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline”, Teor. Veroyatnost. i Primenen., 27:4 (1982), 784–787; Theory Probab. Appl., 27:4 (1983), 844–847
\Bibitem{Bla82}
\by N.~M.~Blank
\paper On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 4
\pages 784--787
\mathnet{http://mi.mathnet.ru/tvp2434}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=681470}
\zmath{https://zbmath.org/?q=an:0522.60015|0498.60023}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 4
\pages 844--847
\crossref{https://doi.org/10.1137/1127093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RU72200014}
Linking options:
https://www.mathnet.ru/eng/tvp2434
https://www.mathnet.ru/eng/tvp/v27/i4/p784
This publication is cited in the following 1 articles: