Abstract:
We present the first nonclassical error bound for short asymptotic expansions in the central limit theorem in $R$ for the case of independent but not necessarily identically distributed random variables. In the case of independent identically distributed random variables under the Cramér condition, this bound provides the correct order of convergence $(1/n)$, and the leading term in the bound is determined by powers of the third and fourth pseudomoments of the random summands.
Keywords:
nonclassical error bound, pseudomoment, asymptotic expansions, central limit theorem.
Citation:
L. S. Yaroslavtseva, “Nonclassical Error Bounds for Asymptotic Expansions in the Central Limit Theorem”, Teor. Veroyatnost. i Primenen., 53:2 (2008), 390–393; Theory Probab. Appl., 53:2 (2009), 365–367
\Bibitem{Yar08}
\by L.~S.~Yaroslavtseva
\paper Nonclassical Error Bounds for Asymptotic Expansions in the Central Limit Theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 2
\pages 390--393
\mathnet{http://mi.mathnet.ru/tvp2422}
\crossref{https://doi.org/10.4213/tvp2422}
\zmath{https://zbmath.org/?q=an:1191.60031}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 2
\pages 365--367
\crossref{https://doi.org/10.1137/S0040585X97983699}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267617600017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67249103668}
Linking options:
https://www.mathnet.ru/eng/tvp2422
https://doi.org/10.4213/tvp2422
https://www.mathnet.ru/eng/tvp/v53/i2/p390
This publication is cited in the following 3 articles:
Lutz Mattner, “A convolution inequality, yielding a sharper Berry–Esseen theorem for summands Zolotarev-close to normal”, Theor. Probability and Math. Statist., 2024
Mattner L. Shevtsova I., “An Optimal Berry-Esseen Type Theorem For Integrals of Smooth Functions”, ALEA-Latin Am. J. Probab. Math. Stat., 16:1 (2019), 487–530
A. V. Syulyukin, “On asymptotic expansions for convolutions of distributions belonging to the domains of attraction of stable laws”, Theory Probab. Appl., 58:3 (2014), 518–524