Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 382–388 (Mi tvp2304)  

This article is cited in 8 scientific papers (total in 8 papers)

Short Communications

Limit theorems for a sequence of branching processes with immigration

I. S. Badalbaeva, A. M. Zubkovb

a Taškent
b Moscow
Abstract: We consider a family Z(n)() of branching processes with immigration defined by a formula
Z(n)(t)=k:θ(n)ktζ(n)k(tθ(n)k),
where θ(n)k – the moment of immigration of kth particle and ζ(n)k() – a branching process of its descendants. It is supposed that:
i)P{0θ(n)1θ(n)2, lim
and all finite-dimensional distributions of the processes
\tau^{(n)}(\alpha)=n^{-1}\sum_{k\colon\theta_k^{(n)}\le\alpha n}1
converge to the corresponding finite-dimensional distrutions of a random process T(\alpha), \alpha\in[0,1] which is stochastically continuous at \alpha=1;
\text{ii)}\quad \mathbf Ms^{\xi_k^{(n)}(t)}=1-\frac{1-s}{1+(1-s)t\gamma}(1+\alpha_n(t;s)),
where \gamma=\mathrm{const} and \alpha_n(t;s)\to 0, n\to\infty, uniformly in the set \{\varepsilon n\le t\le n,\,|s|\le 1\} for every \varepsilon>0.
Theorem 1. If the conditions i) and ii) are fulfilled, then
\lim_{n\to\infty}\mathbf M\exp\biggl\{-u\frac{Z^{(n)}(n)}{n\gamma}\biggr\}=\mathbf M\exp\biggl\{-\frac{u}{\gamma}\int_0^1\frac{dT(s)}{1+(1-s)u}\biggr\}.
Some generalizations are considered also.
Received: 27.04.1982
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 404–409
DOI: https://doi.org/10.1137/1128034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. S. Badalbaev, A. M. Zubkov, “Limit theorems for a sequence of branching processes with immigration”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 382–388; Theory Probab. Appl., 28:2 (1984), 404–409
Citation in format AMSBIB
\Bibitem{BadZub83}
\by I.~S.~Badalbaev, A.~M.~Zubkov
\paper Limit theorems for a sequence of branching processes with immigration
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 382--388
\mathnet{http://mi.mathnet.ru/tvp2304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700219}
\zmath{https://zbmath.org/?q=an:0533.60092|0511.60076}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 404--409
\crossref{https://doi.org/10.1137/1128034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900014}
Linking options:
  • https://www.mathnet.ru/eng/tvp2304
  • https://www.mathnet.ru/eng/tvp/v28/i2/p382
  • This publication is cited in the following 8 articles:
    1. Ibrahim Rahimov, “Homogeneous Branching Processes with Non-Homogeneous Immigration”, Stochastics and Quality Control, 36:2 (2021), 165  crossref
    2. V. Golomoziy, S. Sharipov, “On central limit theorems for branching processes with dependent immigration”, BKNUPhM, 2020, no. 1-2, 7  crossref
    3. Ya. M. Khusanbaev, “On asymptotics of branching processes with immigration”, Discrete Math. Appl., 27:2 (2017), 73–80  mathnet  crossref  crossref  mathscinet  isi  elib
    4. O. A. Butkovskii, “Limit Behavior of a Critical Branching Process with Immigration”, Math. Notes, 92:5 (2012), 612–618  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. Serik Sagitov, “Measure-branching renewal processes”, Stochastic Processes and their Applications, 52:2 (1994), 293  crossref
    6. I. S. Rakhimov, “General Branching Processes with Reproduction Dependent Immigration”, Theory Probab. Appl., 37:3 (1993), 482–496  mathnet  mathnet  crossref
    7. S. M. Sagitov, “A multidimensional critical branching process generated by a large number of particles of a single type”, Theory Probab. Appl., 35:1 (1991), 118–130  mathnet  mathnet  crossref  isi
    8. “Summary of reports presented at sessions of the probability and mathematical statistics seminar at the Steklov Institute of Mathematics of the USSR Academy of Sciences (February–June 1984)”, Theory Probab. Appl., 29:4 (1985), 853–857  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :138
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025