Abstract:
Let $\{X_n,\,n=1,2,\dots\}$ be a sequence of random elements defined on the probability space $(\Omega,\mathscr F,\mathbf P)$ and taking values in the separable metric space $\mathfrak X$.
Let $\mathscr G$ be a $\sigma$-subalgebra of $\mathscr F$. We find general conditions for the sequence $\{X_n,\,n=1,2,\dots\}$ to converge $\mathscr G$-stably; weakly, i. e. for the sequence $\{\mathbf E[\chi_Af(X_n)],\,n=1,2,\dots\}$ to converge for each $A\in\mathscr G$ and for each continuous bounded function $f$ on $\mathfrak X$. The cases of $\mathscr G$-stably weak convergence of semimartingales and point processes are investigated in detail.
Citation:
B. I. Grigelionis, R. A. Mikulevičius, “On stably weak convergence of semimartingales and point processes”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 320–332; Theory Probab. Appl., 28:2 (1984), 337–350