Abstract:
Let us assume that the observations Y1,…,YN have the form (0.1) and that it is
known only that f belongs to the set Σ of 2π-periodical functions in some functional space. We consider the loss function of the type l(‖ˆfN−f‖∞), where l(x) increases for x>0, and prove that the equidistant experimental design and the estimator (1.4) for f are asymptotically optimal in the sense of the rate of convergence of risks for the wide class of sets Σ if the integer n in (1.4) satisfies the equation (1.14). In particular, the optimal order of the rate of convergence is (N/lnN)−β/(2β+1) if Σ is the set of periodical functions with smoothness β.
Citation:
I. A. Ibragimov, R. Z. Has'minskiǐ, “Bounds for the risks of nonparametric estimates of the regression”, Teor. Veroyatnost. i Primenen., 27:1 (1982), 81–94; Theory Probab. Appl., 27:1 (1982), 84–99
\Bibitem{IbrKha82}
\by I.~A.~Ibragimov, R.~Z.~Has'minski{\v\i}
\paper Bounds for the risks of nonparametric estimates of the regression
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 1
\pages 81--94
\mathnet{http://mi.mathnet.ru/tvp2272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=645130}
\zmath{https://zbmath.org/?q=an:0508.62036|0494.62042}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 27
\issue 1
\pages 84--99
\crossref{https://doi.org/10.1137/1127008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QB14800008}
Linking options:
https://www.mathnet.ru/eng/tvp2272
https://www.mathnet.ru/eng/tvp/v27/i1/p81
This publication is cited in the following 35 articles:
Maximilian Wechsung, Michael H. Neumann, “Consistency of a nonparametric least squares estimator in integer-valued GARCH models”, Journal of Nonparametric Statistics, 34:2 (2022), 491
Zhi-Ming Luo, Jeongcheol Ha, Tae Yoon Kim, Inho Park, “Sharp optimality for regression with real-time data”, Journal of the Korean Statistical Society, 44:4 (2015), 632
Christopher R. Genovese, Wiley StatsRef: Statistics Reference Online, 2014
Richard J. Samworth, “Optimal weighted nearest neighbour classifiers”, Ann. Statist., 40:5 (2012)
Juditsky A.B., Lepski O.V., Tsybakov A.B., “Nonparametric Estimation of Composite Functions”, Annals of Statistics, 37:3 (2009), 1360–1404
Goldenshluger A., Lepski O., “Structural adaptation via L–p–norm oracle inequalities”, Probability Theory and Related Fields, 143:1–2 (2009), 41–71
A Wavelet Tour of Signal Processing, 2009, 765
Christophe Chesneau, “Regression with random design: A minimax study”, Statistics & Probability Letters, 77:1 (2007), 40
Christopher R. Genovese, Encyclopedia of Statistical Sciences, 2005
Karine Bertin, “Minimax exact constant in sup-norm for nonparametric regression with random design”, Journal of Statistical Planning and Inference, 123:2 (2004), 225
I. A. Ibragimov, “Estimation of Multivariate Regression”, Theory Probab. Appl., 48:2 (2004), 256
I. A. Ibragimov, “Estimation of multivariate regression”, Theory Probab. Appl., 48:2 (2004), 256–272
Jérôme Kalifa, Stéphane Mallat, “Thresholding estimators for linear inverse problems and deconvolutions”, Ann. Statist., 31:1 (2003)
Claudia Angelini, Daniela De Canditiis, Frédérique Leblanc, “Wavelet regression estimation in nonparametric mixed effect models”, Journal of Multivariate Analysis, 85:2 (2003), 267
András Antos, “Lower bounds for the rate of convergence in nonparametric pattern recognition”, Theoretical Computer Science, 284:1 (2002), 3
C. Angelini, D. De Canditiis, “POINTWISE CONVERGENCE OF THE WAVELET REGULARIZED ESTIMATORS”, Communications in Statistics - Theory and Methods, 31:9 (2002), 1561
L. Györfi, M. Kohler, Principles of Nonparametric Learning, 2002, 57
András Antos, László Györfi, Michael Kohler, “Lower bounds on the rate of convergence of nonparametric regression estimates”, Journal of Statistical Planning and Inference, 83:1 (2000), 91
Jae-Chun Kim, Alexander Korostelev, “Rates of convergence for the sup-norm risk in image models under sequential designs”, Statistics & Probability Letters, 46:4 (2000), 391