Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 1, Pages 81–94 (Mi tvp2272)  

This article is cited in 35 scientific papers (total in 35 papers)

Bounds for the risks of nonparametric estimates of the regression

I. A. Ibragimova, R. Z. Has'minskiĭb

a Leningrad
b Moscow
Abstract: Let us assume that the observations Y1,,YN have the form (0.1) and that it is known only that f belongs to the set Σ of 2π-periodical functions in some functional space. We consider the loss function of the type l(ˆfNf), where l(x) increases for x>0, and prove that the equidistant experimental design and the estimator (1.4) for f are asymptotically optimal in the sense of the rate of convergence of risks for the wide class of sets Σ if the integer n in (1.4) satisfies the equation (1.14). In particular, the optimal order of the rate of convergence is (N/lnN)β/(2β+1) if Σ is the set of periodical functions with smoothness β.
Received: 05.02.1970
English version:
Theory of Probability and its Applications, 1982, Volume 27, Issue 1, Pages 84–99
DOI: https://doi.org/10.1137/1127008
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, R. Z. Has'minskiǐ, “Bounds for the risks of nonparametric estimates of the regression”, Teor. Veroyatnost. i Primenen., 27:1 (1982), 81–94; Theory Probab. Appl., 27:1 (1982), 84–99
Citation in format AMSBIB
\Bibitem{IbrKha82}
\by I.~A.~Ibragimov, R.~Z.~Has'minski{\v\i}
\paper Bounds for the risks of nonparametric estimates of the regression
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 1
\pages 81--94
\mathnet{http://mi.mathnet.ru/tvp2272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=645130}
\zmath{https://zbmath.org/?q=an:0508.62036|0494.62042}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 27
\issue 1
\pages 84--99
\crossref{https://doi.org/10.1137/1127008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QB14800008}
Linking options:
  • https://www.mathnet.ru/eng/tvp2272
  • https://www.mathnet.ru/eng/tvp/v27/i1/p81
  • This publication is cited in the following 35 articles:
    1. Maximilian Wechsung, Michael H. Neumann, “Consistency of a nonparametric least squares estimator in integer-valued GARCH models”, Journal of Nonparametric Statistics, 34:2 (2022), 491  crossref
    2. Zhi-Ming Luo, Jeongcheol Ha, Tae Yoon Kim, Inho Park, “Sharp optimality for regression with real-time data”, Journal of the Korean Statistical Society, 44:4 (2015), 632  crossref
    3. Christopher R. Genovese, Wiley StatsRef: Statistics Reference Online, 2014  crossref
    4. Richard J. Samworth, “Optimal weighted nearest neighbour classifiers”, Ann. Statist., 40:5 (2012)  crossref
    5. B. Levit, “Minimax revisited. II”, Math. Meth. Stat., 19:4 (2010), 299  crossref
    6. Juditsky A.B., Lepski O.V., Tsybakov A.B., “Nonparametric Estimation of Composite Functions”, Annals of Statistics, 37:3 (2009), 1360–1404  crossref  mathscinet  zmath  isi
    7. Goldenshluger A., Lepski O., “Structural adaptation via L–p–norm oracle inequalities”, Probability Theory and Related Fields, 143:1–2 (2009), 41–71  crossref  mathscinet  zmath  isi
    8. A Wavelet Tour of Signal Processing, 2009, 765  crossref
    9. Christophe Chesneau, “Regression with random design: A minimax study”, Statistics & Probability Letters, 77:1 (2007), 40  crossref
    10. Christopher R. Genovese, Encyclopedia of Statistical Sciences, 2005  crossref
    11. Karine Bertin, “Minimax exact constant in sup-norm for nonparametric regression with random design”, Journal of Statistical Planning and Inference, 123:2 (2004), 225  crossref
    12. I. A. Ibragimov, “Estimation of Multivariate Regression”, Theory Probab. Appl., 48:2 (2004), 256  crossref
    13. I. A. Ibragimov, “Estimation of multivariate regression”, Theory Probab. Appl., 48:2 (2004), 256–272  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. Jérôme Kalifa, Stéphane Mallat, “Thresholding estimators for linear inverse problems and deconvolutions”, Ann. Statist., 31:1 (2003)  crossref
    15. Claudia Angelini, Daniela De Canditiis, Frédérique Leblanc, “Wavelet regression estimation in nonparametric mixed effect models”, Journal of Multivariate Analysis, 85:2 (2003), 267  crossref
    16. András Antos, “Lower bounds for the rate of convergence in nonparametric pattern recognition”, Theoretical Computer Science, 284:1 (2002), 3  crossref
    17. C. Angelini, D. De Canditiis, “POINTWISE CONVERGENCE OF THE WAVELET REGULARIZED ESTIMATORS”, Communications in Statistics - Theory and Methods, 31:9 (2002), 1561  crossref
    18. L. Györfi, M. Kohler, Principles of Nonparametric Learning, 2002, 57  crossref
    19. András Antos, László Györfi, Michael Kohler, “Lower bounds on the rate of convergence of nonparametric regression estimates”, Journal of Statistical Planning and Inference, 83:1 (2000), 91  crossref
    20. Jae-Chun Kim, Alexander Korostelev, “Rates of convergence for the sup-norm risk in image models under sequential designs”, Statistics & Probability Letters, 46:4 (2000), 391  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :165
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025