Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 4, Pages 668–695
DOI: https://doi.org/10.4213/tvp2179
(Mi tvp2179)
 

This article is cited in 21 scientific papers (total in 21 papers)

Asymptotic minimaxity of chi-square tests

M. S. Ermakov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
Abstract: We consider the asymptotic behavior of chi-square tests when a number kn of cells increases as the sample size n grows. For such a setting we show that a sequence of chi-square tests is asymptotically minimax if kn=o(n2) as n. The proof makes use of a theorem about asymptotic normality of chi-square test statistics obtained under new assumptions.
Keywords: chi-square tests, asymptotic efficiency, asymptotic normality, asymptotically minimax approach, goodness-of-fit testing.
Received: 11.11.1996
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 4, Pages 589–610
DOI: https://doi.org/10.1137/S0040585X97976441
Bibliographic databases:
Language: Russian
Citation: M. S. Ermakov, “Asymptotic minimaxity of chi-square tests”, Teor. Veroyatnost. i Primenen., 42:4 (1997), 668–695; Theory Probab. Appl., 42:4 (1998), 589–610
Citation in format AMSBIB
\Bibitem{Erm97}
\by M.~S.~Ermakov
\paper Asymptotic minimaxity of chi-square tests
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 4
\pages 668--695
\mathnet{http://mi.mathnet.ru/tvp2179}
\crossref{https://doi.org/10.4213/tvp2179}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1618797}
\zmath{https://zbmath.org/?q=an:0911.62039}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 4
\pages 589--610
\crossref{https://doi.org/10.1137/S0040585X97976441}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079809500004}
Linking options:
  • https://www.mathnet.ru/eng/tvp2179
  • https://doi.org/10.4213/tvp2179
  • https://www.mathnet.ru/eng/tvp/v42/i4/p668
  • This publication is cited in the following 21 articles:
    1. M. S. Ermakov, “O kriteriyakh tipa Neimana dlya proverki slozhnykh neparametricheskikh gipotez”, Veroyatnost i statistika. 36, Zap. nauchn. sem. POMI, 535, POMI, SPb., 2024, 120–140  mathnet
    2. M. S. Ermakov, “Chi-Squared Test for Hypothesis Testing of Homogeneity”, J Math Sci, 273:5 (2023), 763  crossref
    3. Weige Tao, Guotao Wang, Zhigang Sun, Shuyan Xiao, Lingjiao Pan, Quanyu Wu, Min Zhang, “Feature optimization method for white feather broiler health monitoring technology”, Engineering Applications of Artificial Intelligence, 123 (2023), 106372  crossref
    4. M. S. Ermakov, “On Uniform Consistency of Nonparametric Tests. II”, J Math Sci, 268:5 (2022), 629  crossref
    5. M. S. Ermakov, “Kriterii khi-kvadrat dlya proverki gipotezy odnorodnosti”, Veroyatnost i statistika. 30, Zap. nauchn. sem. POMI, 501, POMI, SPb., 2021, 160–180  mathnet
    6. M. Ermakov, “On Uniform Consistency of Nonparametric Tests. I”, J Math Sci, 258:6 (2021), 802  crossref
    7. M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev. II”, Veroyatnost i statistika. 29, Zap. nauchn. sem. POMI, 495, POMI, SPb., 2020, 147–176  mathnet
    8. M. S. Ermakov, “O ravnomernoi sostoyatelnosti neparametricheskikh kriteriev. I”, Veroyatnost i statistika. 28, Zap. nauchn. sem. POMI, 486, POMI, SPb., 2019, 98–147  mathnet
    9. Ji P., Nussbaum M., “Sharp Minimax Adaptation Over Sobolev Ellipsoids in Nonparametric Testing”, Electron. J. Stat., 11:2 (2017), 4515–4562  crossref  mathscinet  zmath  isi  scopus
    10. R. Bárcenas, J. Ortega, A. J. Quiroz, “Quadratic forms of the empirical processes for the two-sample problem for functional data”, TEST, 26:3 (2017), 503  crossref
    11. Robins J.M., Li L., Tchetgen E.T., van der Vaart A., “Asymptotic normality of quadratic estimators”, Stoch. Process. Their Appl., 126:12, SI (2016), 3733–3759  crossref  mathscinet  zmath  isi  scopus
    12. Unnikrishnan J., Huang D., “Weak Convergence Analysis of Asymptotically Optimal Hypothesis Tests”, IEEE Trans. Inf. Theory, 62:7 (2016), 4285–4299  crossref  mathscinet  zmath  isi  elib  scopus
    13. Kelly B.G., Wagner A.B., Tularak T., Viswanath P., “Classification of Homogeneous Data with Large Alphabets”, IEEE Trans. Inf. Theory, 59:2 (2013), 782–795  crossref  mathscinet  zmath  isi  elib  scopus
    14. Huang D., Meyn S., “Generalized Error Exponents for Small Sample Universal Hypothesis Testing”, IEEE Trans. Inf. Theory, 59:12 (2013), 8157–8181  crossref  mathscinet  zmath  isi  scopus
    15. Huang D., Meyn S., “Error Exponents for Composite Hypothesis Testing with Small Samples”, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2012, 3261–3264  crossref  isi  scopus
    16. Huang D., Meyn S., “Classification with High-Dimensional Sparse Samples”, 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE International Symposium on Information Theory, IEEE, 2012  isi
    17. Dayu Huang, Sean Meyn, 2012 IEEE International Symposium on Information Theory Proceedings, 2012, 2586  crossref
    18. Mikhail Ermakov, “Nonparametric signal detection with small type I and type II error probabilities”, Stat Inference Stoch Process, 14:1 (2011), 1  crossref
    19. M. S. Ermakov, “On large deviations of type II error probabilities of Kolmogorov and omega-squared tests”, J. Math. Sci. (N. Y.), 128:1 (2005), 2538–2555  mathnet  crossref  mathscinet  zmath
    20. V. M. Kruglov, “The asymptotic behavior of the Pearson statistic”, Theory Probab. Appl., 45:1 (2001), 69–92  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :311
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025