Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 1, Pages 62–82 (Mi tvp2155)  

This article is cited in 5 scientific papers (total in 5 papers)

Multidimensional integral limit theorems for large deviations

A. K. Aleškevičiene

Vilnius
Abstract: Let Sn=X(1)++X(n) be a sum of independent identically distributed random vectors in Rs and let {Dn}, DnRs, be a sequence of convex Borel sets, for n=1,2,. Let the point an be the point of Dn which is nearest to the origin. Under general conditions we obtain Cramer's type asymptotical formulas for
P{n1/2SnDn},|an|1,|an|=o(n),n.
Received: 20.02.1980
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 1, Pages 65–88
DOI: https://doi.org/10.1137/1128004
Bibliographic databases:
Language: Russian
Citation: A. K. Aleškevičiene, “Multidimensional integral limit theorems for large deviations”, Teor. Veroyatnost. i Primenen., 28:1 (1983), 62–82; Theory Probab. Appl., 28:1 (1984), 65–88
Citation in format AMSBIB
\Bibitem{Ale83}
\by A.~K.~Ale{\v s}kevi{\v{c}}iene
\paper Multidimensional integral limit theorems for large deviations
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 1
\pages 62--82
\mathnet{http://mi.mathnet.ru/tvp2155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=691468}
\zmath{https://zbmath.org/?q=an:0529.60024|0518.60035}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 1
\pages 65--88
\crossref{https://doi.org/10.1137/1128004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SL53600004}
Linking options:
  • https://www.mathnet.ru/eng/tvp2155
  • https://www.mathnet.ru/eng/tvp/v28/i1/p62
  • This publication is cited in the following 5 articles:
    1. A. Yu. Zaigraev, A. V. Nagaev, “Abelian theorems, limit properties of conjugate distributions, and large deviations for sums of independent random vectors”, Theory Probab. Appl., 48:4 (2004), 664–680  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. A. Borovkov, A. A. Mogul'skii, “Integro-local limit theorems including large deviations for sums of random vectors. II”, Theory Probab. Appl., 45:1 (2001), 3–22  mathnet  mathnet  crossref  crossref  isi
    3. Shao C. Fang, Santosh S. Venkatesh, “Learning finite binary sequences from half-space data”, Random Struct. Alg., 14:4 (1999), 345  crossref
    4. U. Madhow, M.B. Pursley, “Acquisition in direct-sequence spread-spectrum communication networks: an asymptotic analysis”, IEEE Trans. Inform. Theory, 39:3 (1993), 903  crossref
    5. L. I. Saulis, “Probabilities of large deviations for random vectors”, Theory Probab. Appl., 36:3 (1991), 494–507  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025