Processing math: 100%
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1984, Volume 29, Issue 3, Pages 566–570 (Mi tvp2100)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

Bernštein–Feller central limit theorem in Rp

S. V. Semovskiĭ
Full-text PDF (356 kB) Citations (2)
Received: 01.11.1981
English version:
Theory of Probability and its Applications, 1985, Volume 29, Issue 3, Pages 586–591
DOI: https://doi.org/10.1137/1129078
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Semovskiǐ, “Bernštein–Feller central limit theorem in Rp”, Teor. Veroyatnost. i Primenen., 29:3 (1984), 566–570; Theory Probab. Appl., 29:3 (1985), 586–591
Citation in format AMSBIB
\Bibitem{Sem84}
\by S.~V.~Semovski{\v\i}
\paper Bernštein--Feller central limit theorem in $R^p$
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 3
\pages 566--570
\mathnet{http://mi.mathnet.ru/tvp2100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=761147}
\zmath{https://zbmath.org/?q=an:0571.60030}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 3
\pages 586--591
\crossref{https://doi.org/10.1137/1129078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985ANY1800020}
Linking options:
  • https://www.mathnet.ru/eng/tvp2100
  • https://www.mathnet.ru/eng/tvp/v29/i3/p566
  • This publication is cited in the following 2 articles:
    1. S. V. Semovskiǐ, “Operator-Normed Sums of Random Vectors: Simultaneous Convergence to the Normal Law with the Convergence of Moments”, Theory Probab. Appl., 32:4 (1987), 748–749  mathnet  mathnet  crossref  isi
    2. V. V. Buldygin, S. A. Solntzev, “The Strong Law of Large Numbers for Sums of Independent Random Vectors with Operator Normalization and the Convergence of Gaussian Sequences to Zero”, Theory Probab. Appl., 32:2 (1987), 243–256  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :132
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025