Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 3, Pages 538–582
DOI: https://doi.org/10.4213/tvp207
(Mi tvp207)
 

This article is cited in 186 scientific papers (total in 186 papers)

General asymptotic Bayesian theory of quickest change detection

A. G. Tartakovskiia, V. Veeravallib

a University of Southern California
b University of Illinois at Urbana-Champaign
References:
Abstract: The optimal detection procedure for detecting changes in independent and identically distributed (i.i.d.) sequences in a Bayesian setting was derived by Shiryaev in the 1960s sixties. However, the analysis of the performance of this procedure in terms of the average detection delay and false alarm probability has been an open problem. In this paper, we develop a general asymptotic change-point detection theory that is not limited to a restrictive i.i.d. assumption. In particular, we investigate the performance of the Shiryaev procedure for general discrete-time stochastic models in the asymptotic setting, where the false alarm probability approaches zero. We show that the Shiryaev procedure is asymptotically optimal in the general non-i.i.d. case under mild conditions. We also show that the two popular non-Bayesian detection procedures, namely the Page and the Shiryaev–Roberts–Pollak procedures, are generally not optimal (even asymptotically) under the Bayesian criterion. The results of this study are shown to be especially important in studying the asymptotics of decentralized change detection procedures.
Keywords: change-point detection, sequential detection, asymptotic optimality, nonlinear renewal theory.
Received: 07.11.2003
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 3, Pages 458–497
DOI: https://doi.org/10.1137/S0040585X97981202
Bibliographic databases:
Language: English
Citation: A. G. Tartakovskii, V. Veeravalli, “General asymptotic Bayesian theory of quickest change detection”, Teor. Veroyatnost. i Primenen., 49:3 (2004), 538–582; Theory Probab. Appl., 49:3 (2005), 458–497
Citation in format AMSBIB
\Bibitem{TarVee04}
\by A.~G.~Tartakovskii, V.~Veeravalli
\paper General asymptotic Bayesian theory of
quickest change detection
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 3
\pages 538--582
\mathnet{http://mi.mathnet.ru/tvp207}
\crossref{https://doi.org/10.4213/tvp207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144868}
\zmath{https://zbmath.org/?q=an:1131.62314}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 3
\pages 458--497
\crossref{https://doi.org/10.1137/S0040585X97981202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232261200006}
Linking options:
  • https://www.mathnet.ru/eng/tvp207
  • https://doi.org/10.4213/tvp207
  • https://www.mathnet.ru/eng/tvp/v49/i3/p538
  • This publication is cited in the following 186 articles:
    1. Chenhan Xiao, Yizheng Liao, Yang Weng, “Privacy-Preserving Line Outage Detection in Distribution Grids: An Efficient Approach With Uncompromised Performance”, IEEE Trans. Power Syst., 40:1 (2025), 866  crossref
    2. Chenhan Xiao, Yizheng Liao, Yang Weng, Smart Cyber‐Physical Power Systems, 2025, 555  crossref
    3. Taposh Banerjee, Prudhvi Gurram, Gene Whipps, “Minimax asymptotically optimal quickest change detection for statistically periodic data”, Signal Processing, 215 (2024), 109290  crossref
    4. Arunava Naha, Subhrakanti Dey, “Bayesian Quickest Change-Point Detection With an Energy Harvesting Sensor and Asymptotic Analysis”, IEEE Trans. Signal Process., 72 (2024), 565  crossref
    5. Luke Snow, Vikram Krishnamurthy, Brian M. Sadler, “Quickest Detection for Human-Sensor Systems Using Quantum Decision Theory”, IEEE Trans. Signal Process., 72 (2024), 368  crossref
    6. Suya Wu, Enmao Diao, Taposh Banerjee, Jie Ding, Vahid Tarokh, “Quickest Change Detection for Unnormalized Statistical Models”, IEEE Trans. Inform. Theory, 70:2 (2024), 1220  crossref
    7. Evgenii A. Pchelintsev, Serguei M. Pergamenchtchikov, Roman O. Tenzin, “Truncated sequential change-point detection for Markov chains with applications in the epidemic statistical analysis”, Sequential Analysis, 43:1 (2024), 57  crossref
    8. Chenhan Xiao, Yizheng Liao, Yang Weng, “Distribution Grid Line Outage Identification With Unknown Pattern and Performance Guarantee”, IEEE Trans. Power Syst., 39:2 (2024), 3987  crossref
    9. Yingze Hou, Yousef Oleyaeimotlagh, Rahul Mishra, Hoda Bidkhori, Taposh Banerjee, “Robust quickest change detection in nonstationary processes”, Sequential Analysis, 2024, 1  crossref
    10. Jasmin James, Jason J. Ford, Timothy L. Molloy, “A Framework for Bayesian Quickest Change Detection in General Dependent Stochastic Processes”, IEEE Control Syst. Lett., 8 (2024), 790  crossref
    11. Zhongchang Sun, Shaofeng Zou, “Quickest Change Detection in Autoregressive Models”, IEEE Trans. Inform. Theory, 70:7 (2024), 5248  crossref
    12. Peter Baxendale, Dongchang Li, N. Sri Namachchivaya, “Quickest change detection in nonlinear hidden Markov models using a generalized CUSUM procedure with particle filters”, Nonlinear Dyn, 2024  crossref
    13. Hao Chen, Abhishek Gupta, Yin Sun, Ness Shroff, “Model-Free Change Point Detection for Mixing Processes”, IEEE Open J. Control. Syst., 3 (2024), 202  crossref
    14. Serguei Pergamenchtchikov, Roman Tenzin, Advances in Intelligent Systems and Computing, 1458, Combining, Modelling and Analyzing Imprecision, Randomness and Dependence, 2024, 342  crossref
    15. Mehmet Necip Kurt, Jiaohao Zheng, Yasin Yilmaz, Xiaodong Wang, “DeepQCD: An end-to-end deep learning approach to quickest change detection”, Journal of the Franklin Institute, 2024, 107199  crossref
    16. Taposh Banerjee, Vahid Tarokh, “Bayesian quickest change detection for unnormalized and score-based models”, Sequential Analysis, 43:3 (2024), 359  crossref
    17. Yanglei Song, Georgios Fellouris, “Change acceleration and detection”, Ann. Statist., 52:3 (2024)  crossref
    18. Sven Knoth, Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science, 2024, 127  crossref
    19. Serguei Pergamenchtchikov, Roman Tenzin, Lecture Notes in Networks and Systems, 1154, Proceedings of the Future Technologies Conference (FTC) 2024, Volume 1, 2024, 77  crossref
    20. Liad Lea Didi, Tomer Gafni, Kobi Cohen, 2024 60th Annual Allerton Conference on Communication, Control, and Computing, 2024, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:772
    Full-text PDF :233
    References:135
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025