Processing math: 100%
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 1, Pages 148–156 (Mi tvp1982)  

This article is cited in 31 scientific papers (total in 31 papers)

Short Communications

Random mappings with one attracting center

V. E. Stepanov

Moscow
Abstract: A random mapping T of the set {a0,a1,,an} into itself is determined by the following requirements: 1) images of the points ai, 0in, are chosen at random and independently; 2) for any i
P(Tai=a0)=λ/(n+λ),λ1;P(Tai=aj)=1/(n+λ),1jn.
Vertex a0 is called an attracting center of weight λ. The graph component of mapping T containing the center, the cycle belonging to it and all its vertices are called principal, and all the rest components, cycles and vertices are called free.
Limit distributions of various characteristics of random mappings with one attracting center of weight λ are studied in this paper. For example, it is shown that if λ varies an n so that λ/n but λ/n0 the distribution of the random variable λ2ξn(λ)/n2 where ξn(λ) is the number of free vertices converges to the χ2-distribution with one degree of freedom.
Received: 22.12.1969
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 1, Pages 155–162
DOI: https://doi.org/10.1137/1116013
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. E. Stepanov, “Random mappings with one attracting center”, Teor. Veroyatnost. i Primenen., 16:1 (1971), 148–156; Theory Probab. Appl., 16:1 (1971), 155–162
Citation in format AMSBIB
\Bibitem{Ste71}
\by V.~E.~Stepanov
\paper Random mappings with one attracting center
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 1
\pages 148--156
\mathnet{http://mi.mathnet.ru/tvp1982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=410842}
\zmath{https://zbmath.org/?q=an:0239.60017}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 1
\pages 155--162
\crossref{https://doi.org/10.1137/1116013}
Linking options:
  • https://www.mathnet.ru/eng/tvp1982
  • https://www.mathnet.ru/eng/tvp/v16/i1/p148
  • This publication is cited in the following 31 articles:
    1. P L Krapivsky, “Random maps with sociological flavor”, J. Phys. A: Math. Theor., 57:21 (2024), 215201  crossref
    2. Jennie C. Hansen, Jerzy Jaworski, “Predecessors and Successors in Random Mappings with Exchangeable In-Degrees”, Journal of Applied Probability, 50:3 (2013), 721  crossref
    3. Jennie C. Hansen, Jerzy Jaworski, “Predecessors and Successors in Random Mappings with Exchangeable In-Degrees”, J. Appl. Probab., 50:03 (2013), 721  crossref
    4. Jennie C. Hansen, Jerzy Jaworski, “A random mapping with preferential attachment”, Random Struct Algorithms, 34:1 (2009), 87  crossref
    5. Subrata Chakraborty, “On Some New α-Modified Binomial and Poisson Distributions and Their Applications”, Communications in Statistics - Theory and Methods, 37:11 (2008), 1755  crossref
    6. V. S. Kozyakin, N. A. Kuznetsov, “Feasibility of numerical modelling: Information aspect”, Autom Remote Control, 68:12 (2007), 2228  crossref
    7. A. N. Timashev, “Random mappings of finite sets with a known number of components”, Theory Probab. Appl., 48:4 (2004), 741–751  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. David Aldous, Jim Pitman, Asymptotic Combinatorics with Application to Mathematical Physics, 2002, 113  crossref
    9. A. V. Pokrovskii, A. J. Kent, J. G. McInerney, “Mixed moments of random mappings and chaotic dynamical systems”, Proc. R. Soc. Lond. A, 456:2002 (2000), 2465  crossref
    10. C. A. O'Cinneide, A. V. Pokrovskii, “Nonuniform random transformations”, Ann. Appl. Probab., 10:4 (2000)  crossref
    11. Jennie Hansen, Jerzy Jaworski, “Large components of bipartite random mappings”, Random Struct. Alg., 17:3-4 (2000), 317  crossref
    12. P. Diamond, P.E. Kloeden, V.S. Kozyakin, A.V. Pokrovskii, “A model for roundoff and collapse in computation of chaotic dynamical systems”, Mathematics and Computers in Simulation, 44:2 (1997), 163  crossref
    13. Phil Diamond, Peter Kloeden, Aleksej Pokrovskii, Control and Chaos, 1997, 60  crossref
    14. V. Kozyakin, N. Kuznetsov, A. Pokrovskii, I. Vladimirov, “Some problems in analysis of discretizations of continuous dynamical systems”, Nonlinear Analysis: Theory, Methods & Applications, 30:2 (1997), 767  crossref
    15. P. Diamond, M. Suzuki, P. Kloeden, P. Pokrovskii, “Statistical properties of discretizations of a class of chaotic dynamical systems”, Computers & Mathematics with Applications, 31:11 (1996), 83  crossref
    16. Phil Diamond, Anthony Klemm, Peter Kloeden, Aleksej Pokrovskii, “Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures”, J Stat Phys, 84:3-4 (1996), 713  crossref
    17. P. Diamond, P. Kloeden, A. Pokrovskii, A. Vladimirov, “Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre”, Physica D: Nonlinear Phenomena, 86:4 (1995), 559  crossref
    18. Yü Sung, “Ein einfaches Graphenmodell”, Math. Semesterber., 41:2 (1994), 157  crossref
    19. David J. Aldous, Jim Pitman, “Brownian bridge asymptotics for random mappings”, Random Struct Algorithms, 5:4 (1994), 487  crossref
    20. K. Nowicki, “Asymptotic distributions in random graphs with applications to social networks”, Statistica Neerlandica, 45:3 (1991), 295  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:216
    Full-text PDF :108
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025