Abstract:
It is shown that the scalar stochastic differential equation
xt=x0+∫t0A(s,xs)ds+∫t0B(s,xs)dws,0⩽t⩽T,
has at least one strong solution under the following conditions:
a) scalar functions A(t,x) and B(t,x) are continuous in both t, x for 0⩽t⩽T,
−∞<x<∞;
b) B(t,x) satisfies a local Lipschitz conditions in x;
c) |A(t,x)|+|B(t,x)|⩽L(1+|x|) for some constant L and all t, x;
d) Mx20<∞.
Citation:
I. V. Fedorenko, “On the existence of a strong solution of an Ito stochastic differential equation”, Teor. Veroyatnost. i Primenen., 29:1 (1984), 120–123; Theory Probab. Appl., 29:1 (1985), 121–123
\Bibitem{Fed84}
\by I.~V.~Fedorenko
\paper On the existence of a~strong solution of an Ito stochastic differential equation
\jour Teor. Veroyatnost. i Primenen.
\yr 1984
\vol 29
\issue 1
\pages 120--123
\mathnet{http://mi.mathnet.ru/tvp1966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=739507}
\zmath{https://zbmath.org/?q=an:0555.60035|0525.60066}
\transl
\jour Theory Probab. Appl.
\yr 1985
\vol 29
\issue 1
\pages 121--123
\crossref{https://doi.org/10.1137/1129012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1985AFG0600012}
Linking options:
https://www.mathnet.ru/eng/tvp1966
https://www.mathnet.ru/eng/tvp/v29/i1/p120
This publication is cited in the following 2 articles:
A. V. Melnikov, “Stochastic differential equations: singularity of coefficients, regression models, and stochastic approximation”, Russian Math. Surveys, 51:5 (1996), 819–909
A. V. Melnikov, “On a class of stochastic differential equations arising from the stochastic approximation theory”, Stochastics and Stochastic Reports, 44:3-4 (1993), 253