Citation:
I. F. Pinelis, A. I. Sahanenko, “Remarks on inequalities for the probabilities of large deviations”, Teor. Veroyatnost. i Primenen., 30:1 (1985), 127–131; Theory Probab. Appl., 30:1 (1986), 143–148
This publication is cited in the following 43 articles:
Johannes Milz, Michael Ulbrich, “Sample Size Estimates for Risk-Neutral Semilinear PDE-Constrained Optimization”, SIAM J. Optim., 34:1 (2024), 844
Phuoc-Truong Huynh, Konstantin Pieper, Daniel Walter, “Towards optimal sensor placement for inverse problems in spaces of measures”, Inverse Problems, 40:5 (2024), 055007
Yuan Mao, Lei Shi, Zheng-Chu Guo, “Coefficient-based regularized distribution regression”, Journal of Approximation Theory, 297 (2024), 105995
Emanuele Dolera, Stefano Favaro, Edoardo Mainini, “Strong posterior contraction rates via Wasserstein dynamics”, Probab. Theory Relat. Fields, 2024
Joubine Aghili, Olga Mula, “An optimal control framework for adaptive neural ODEs”, Adv Comput Math, 50:3 (2024)
Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner, “An operator learning perspective on parameter-to-observable maps”, FoDS, 2024
Tapio Helin, “Least Squares Approximations in Linear Statistical Inverse Learning Problems”, SIAM J. Numer. Anal., 62:4 (2024), 2025
Johannes Milz, “Reliable Error Estimates for Optimal Control of Linear Elliptic PDEs with Random Inputs”, SIAM/ASA J. Uncertainty Quantification, 11:4 (2023), 1139
Johannes Milz, “Sample average approximations of strongly convex stochastic programs in Hilbert spaces”, Optim Lett, 17:2 (2023), 471
Iosif Pinelis, “Improved concentration bounds for sums of independent sub-exponential random variables”, Statistics & Probability Letters, 191 (2022), 109666
AbdelKader El Moumen, Salim Benslimane, Samir Rahmani, “Robbins–Monro Algorithm with ψ-Mixing Random Errors”, Math. Meth. Stat., 31:3 (2022), 105
Enrico Cecini, Ernesto De Vito, Lorenzo Rosasco, “Multi-scale vector quantization with reconstruction trees”, Information and Inference: A Journal of the IMA, 10:3 (2021), 955
Junhong Lin, Volkan Cevher, “Kernel conjugate gradient methods with random projections”, Applied and Computational Harmonic Analysis, 55 (2021), 223
Junhong Lin, Alessandro Rudi, Lorenzo Rosasco, Volkan Cevher, “Optimal rates for spectral algorithms with least-squares regression over Hilbert spaces”, Applied and Computational Harmonic Analysis, 48:3 (2020), 868
Abhishake Rastogi, Gilles Blanchard, Peter Mathé, “Convergence analysis of Tikhonov regularization for non-linear statistical inverse problems”, Electron. J. Statist., 14:2 (2020)
Weinan E, Jiequn Han, Qianxiao Li, “A mean-field optimal control formulation of deep learning”, Res Math Sci, 6:1 (2019)
Gilles Blanchard, Oleksandr Zadorozhnyi, “Concentration of weakly dependent Banach-valued sums and applications to statistical learning methods”, Bernoulli, 25:4B (2019)
Zheng-Chu Guo, Lei Shi, “Optimal rates for coefficient-based regularized regression”, Applied and Computational Harmonic Analysis, 47:3 (2019), 662
Kartashov A.S., Sakhanenko A.I., “On Sufficient Conditions For a Gaussian Approximation of Kernel Estimates For Distribution Densities”, Sib. Electron. Math. Rep., 15 (2018), 1530–1552
Antoine Marchina, “Concentration inequalities for separately convex functions”, Bernoulli, 24:4A (2018)